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Singular and regular gap solitons between three dispersion curves
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A general model is introduced to describe a wave-envelope system for the situation when the linear disper-
sion relation has three branches, which in the absence of any coupling terms between these branches, would
intersect pairwise in three nearly coincident points. The system contains two waves with a strong linear
coupling between them, to which a third wave is then coupled. This model has two gaps in its linear spectrum.
As is typical for wave-envelope systems, the model also contains a set of cubic nonlinear terms. Realizations
of this model can be made in terms of temporal or spatial evolution of optical fields in, respectively, either a
planar waveguide, or a bulk-layered medium resembling a photonic-crystal fiber, which carry a triple spatial
Bragg grating. Another physical system described by the same general model is a set of three internal wave
modes in a density-stratified fluid, whose phase speeds come into close coincidence for a certain wave number.
A nonlinear analysis is performed for zero-velocity solitons, that is, they have zero velocity in the reference
frame in which the third wave has zero group velocity. If one may disregard the self-phase modulation~SPM!
term in the equation for the third wave, we find an analytical solution which shows that there simultaneously
exist two different families of solitons: regular ones, which may be regarded as a smooth deformation of the
usual gap solitons in a two-wave system, andcuspons, which have finite amplitude and energy, but a singu-
larity in the first derivative at their center. Even in the limit when the linear coupling of the third wave to the
first two nearly vanishes, the soliton family remains drastically different from that in the uncoupled system; in
this limit, regular solitons whose amplitude exceeds a certain critical value are replaced bypeakons~whose first
derivative is finite at the center, but jumps in value!. While the regular solitons, cuspons, and peakons are found
in an exact analytical form, their stability is tested numerically, which shows that they all may be stable. If the
SPM terms are retained, we find that there may again simultaneously exist two different families of generic
stable soliton solutions, namely, regular ones and peakons. Direct simulations show that both types of solitons
are stable in this case.
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I. INTRODUCTION

A. Model system

Gap solitons~GS! is a common name for solitary wave
in nonlinear models which feature one or more@2# gaps in
their linear spectrum, see review papers@1# and @2#, respec-
tively, for these two cases. A soliton may exist if its fr
quency belongs to the gap, as then it does not decay
linear waves.

Gaps in the linear spectrum are a generic phenomeno
two- or multi-component systems, as intersection of disp
sion curves belonging to different components is generic
prevented by a linear coupling between the components.
cluding cases when the system’s linear spectrum is unst
~which is possible in a fluid dynamics application@3#!, the
intersection avoidance alters the spectrum so that a
opens in place of the intersection. Approximating the t
dispersion curves, that would intersect in the absence of
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coupling, by straight lines, and assuming a generic cu
@x (3)# nonlinearity, one arrives at a generalized mass
Thirring model ~GMTM!, which has a family of exact GS
solutions that completely fill the gap@4#. The model has a
direct application to nonlinear optics, describing copropa
tion of forward- and backward-traveling electromagne
waves in a fiber with a resonant Bragg grating~BG!. Gap
solitons, first predicted theoretically, were observed in
periments with light pulses launched into a short piece of
BG-equipped fiber@5# ~in fact, optical solitons that were firs
observed in the BG fiber@6# were, strictly speaking, not o
the GS type, but more general ones, whose central freque
did not belong to the fiber’s band gap!.

GS are known not only in optics but also in other physic
settings, for instance, in density-stratified fluid flows, whe
dispersion curves pertaining to two different internal-wa
modes often exhibit near intersections. Again taking into
gard weak nonlinearity, one can predict the occurrence of
in density-stratified fluids@7#.

In this work, we aim to consider GS that may exist in
generic situation of the next type, when the underlying s
tem contains three wave components, and the correspon
dispersion curves intersect at three nearly coincident poi
©2002 The American Physical Society06-1
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unless linear coupling terms are taken into account. Si
tions of this type can readily occur in the above-mention
density-stratified fluid flows, since tuning of two suitable e
ternal parameters can often lead to a near coincidence in
linear phase speeds of three independent internal w
modes, for certain wave numbers~see@8#!. Indeed, similar
considerations can be applied to many other physical
tems. As for the usual GS systems, the generic wa
envelope model can be expected to contain cubic nonlin
terms.

In optics, a x (3)-nonlinear model with three linearly
coupled waves is possible too, in terms of either tempor
evolution of fields in a planar nonlinear waveguide equipp
with a triple BG in the form of three systems of parall
scores, or spatial evolution of stationary fields in a bu
waveguide with a similar triple BG consisting of three sy
tems of parallel interfaces between layers. The latter real
tion seems natural enough, as it strongly resembles photo
crystal fibers, which have recently attracted a great dea
interest@9#. Note that the former version of the model is
generalization of a three-wave model for ax (2)-nonlinear
planar waveguide with an ordinary BG, which was intr
duced in@10,11#. Both versions of the proposed model a
illustrated in Fig. 1, where the periodic lattice shows t
triple BG. In the case of the temporal evolution, Fig. 1 d
plays the planar waveguide, while in the case of the spa
evolution, it is a transverse cross section of the bulk wa
guide.

FIG. 1. A schematic representation of the optical model t
gives rise to the three linearly coupled waves in ax (3) waveguide.
The figure shows either the planar waveguide with the triple Br
grating, in the case of the temporal evolution of the fields, or
transverse cross section of the bulk medium of the laye
~photonic-crystal-fiber! type, in the case of the spatial evolutio
along the coordinatez perpendicular to the plane of the figure. Th
triangles formed by bold arrows illustrate how the linear couplin
between the three waves, whose Poynting vectors are repres
by the arrows, are induced by the Bragg reflections on the th
gratings. The difference between the gratings represented by
continuous and dashed lines is in their strength~refractive-index
contrast!.
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We stress that the lattice in Fig. 1 is not completely sy
metric; although the triangular cells of the lattice are equil
eral ones, the two diagonal subgratings are assumed, in
general case, to have the strength~contrast of the refractive
index! smaller than the horizontal one. The bold triangl
inscribed into the two triangular cells illustrate the reson
Bragg reflections that give rise to linear couplings betwe
the waves. Then, neglecting intrinsic dispersion or diffract
of the waves in comparison with the strong artifici
dispersion/diffraction induced by the Bragg reflections, n
malized equations governing the spatial evolution of
three fields whose Poynting vectors are shown by three b
arrows in Fig. 1, are

i S ]u1

]t
2

]u1

]x
2

1

A3

]u1

]y D 1u21ku3

1~ uu1u212uu2u212uu3u2!u150, ~1!

i S ]u2

]t
1

]u2

]x
2

1

A3

]u2

]y D 1u11k* u3

1~ uu2u212uu1u212uu3u2!u250, ~2!

i S ]u3

]t
1

2

A3

]u3

]y D 1k* u11ku2

1~ uu3u212uu1u212uu2u2!u35v0u3 . ~3!

Here, the evolution variablet is the proper time in the case o
the temporal evolution in the planar waveguide, or the co
dinate z in the direction perpendicular to the plane of th
figure in the case of the spatial evolution in the bulk wav
guide. In the latter case, the beam enters the medium thro
the planez50 and evolves along the coordinatez, that is
why it plays the role of the evolution variable in the equ
tions ~the initial conditions necessary to launch a soliton w
be discussed in more detail below!. The relative coefficients
in front of the x- and y-derivative terms correspond to th
geometry in Fig. 1, the coefficient of the walk off in thex
direction in the first two equations being normalized to
61. The coefficient of the BG-induced linear conversi
between the wavesu1 andu2 is normalized to be one, while
the parameterk ~which is complex, in the most general cas
but see the discussion below! accounts for the linear conver
sion between these waves and the third waveu3, and the
usual ratio 1:2 between the coefficients of the self-ph
modulation ~SPM! and cross-phase modulation~XPM! is
adopted. Last,v0 is a frequency/wave-number mismatch b
tween the third and the first two waves, which is caused
the above-mentioned asymmetry between the diagonal
horizontal subgratings, as well as by other reasons.

As we mentioned above, the Bragg constantk in Eqs.
~1!–~3!, which couples the fieldu3 to the pairu1,2, is com-
plex in the general case@note that the constant of the Brag
coupling between the fieldsu1 andu2 might also be complex
in its primary form, and making it equal to one in Eqs.~1!
and ~2! involves opposite constant phase shifts of the fie
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u1 andu2, which is whyk andk* appear exactly as in Eqs
~1!–~3!#. However, assuming that each score, the families
which constitute the triple grating~in the case of the
temporal-domain evolution in the planar waveguide!, gives
rise to simple reflection described by the classical Fres
formulas, it is easy to conclude that all the coupling co
stants are real and positive, provided that either the ligh
polarized orthogonally to the waveguide’s plane, and the
flection takes place from a less optically dense material~i.e.,
the ‘‘score’’ is, literally, a shallow trough on the surface
the planar waveguide!, or the light is polarized parallel to th
plane of the waveguide, and the reflection is from a m
optically dense material. Similarly, in the case when
same equations describe the spatial evolution of the op
fields in the layered bulk medium, one may assume that
ther the light is polarized in thez direction, and seams be
tween the layers are filled with a material~for instance, air!
which is optically less dense than the bulk medium, or
polarization is orthogonal to thez axis ~i.e., it is parallel to
the plane of Fig. 1!, and the material filling the interlaye
seams is optically denser than the host medium.

In the present paper, we focus on this case, which
described above in detail for the realizations of the mode
terms of both planar and bulk optical waveguides, and wh
corresponds tok real and positive in Eqs.~1!–~3!. Note,
incidentally, that the case whenk is real andnegativecan be
reduced to the same case simply by reversing the sign in
definition of u3.

The model displayed in Fig. 1 may be further generaliz
by introducing an additional asymmetry, which will remov
the equality between the horizontal side of the lattice’s tri
gular cell and its diagonal sides. Then, the simultaneous
fillment of the Bragg-reflection conditions for the wavesu1,2

andu3 can be secured by making the waveguide anisotro
However, such a generalization goes beyond the scop
this paper.

For the physical realization of the model, Eqs.~1!–~3!
must be supplemented by initial conditions att50 in the
case of the temporal evolution in the planar waveguide
boundary conditions atz50 in the case of the spatial evolu
tion in the bulk medium. It is sufficient to assume that, at
50, a single wave component~for instance,u3) is launched
into the waveguide. The linear-coupling terms in the eq
tions will then start to generate the other components, an
solitons that might exist in this model are stable~see below!,
they may self-trap from such an initial beam.

Bearing in mind also the above-mentioned application
internal waves in stratified fluids, as well as similar realiz
tions in other physical media, Eqs.~1!–~3! may be naturally
extended by introducing more general SPM and XPM co
ficients, as in applications other than nonlinear optics,
ratios between the XPM and SPM coefficients may be
ferent from those adopted above. Thus, the generalized
tem of equations takes the following form, in which we co
fine consideration to y-independent solutions ~the
consideration of possible three-dimensional solitons in
case ofy-dependent fields is not an objective of this work!:
06660
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i S ]u1

]t
2

]u1

]x D1u21ku3

1a~as1uu1u21auu2u21uu3u2!u150, ~4!

i S ]u2

]t
1

]u2

]x D1u11ku3

1a~as1uu2u21auu1u21uu3u2!u250, ~5!

i
]u3

]t
1k~u11u2!1~s3uu3u21auu1u21auu2u2!u35v0u3 ,

~6!

where, in accord with the discussion above, we setk to be
real and positive.

The coefficientss1,3 anda in Eqs.~4!–~6! are the gener-
alized SPM and XPM coefficients, respectively. In particul
a is defined as a relative XPM coefficient between the fi
two waves and the third wave. In fact, the coefficientss1
and s3 both may be normalized to be61, unless they are
equal to zero; however, it will be convenient to keep them
free parameters, see below~note that the SPM coefficient
are always positive in the optical models, but in those
scribing density-stratified fluids they may have either sig!.
In optical models, all the coefficientsa ands1,3 are positive.
However, in the models describing the internal waves
stratified fluids, there is no inherent restriction on their sig
and some of them may indeed be negative.

The symmetry between the walk-off terms in Eqs.~4! and
~5! is not really essential, and we will comment later on t
more general case when these terms are generalized a
lows:

2
]u1

]x
→2c1

]u1

]x
, 1

]u2

]x
→1c2

]u1

]x
, ~7!

wherec1 andc2 are different, but have the same sign. As f
Eq. ~6!, it is obvious that the walk-off term in this equation
if any, can always be eliminated by means of a straightf
ward transformation.

We have kept only the most natural nonlinear SPM a
XPM terms in Eqs.~4!–~6!, i.e., the terms of the same type
as in the standard GMT model. Additional terms, includi
nonlinear corrections to the linear couplings@e.g., a term
;uu1u2u2 in Eq. ~4!# may appear in more general mode
such as a model of a deep~strong! BG @10#.

Equations ~4!–~6! conserve the norm, which has th
physical meaning of energy in optics,

N[ (
n51,2,3

E
2`

1`

uun~x!u2dx, ~8!

the Hamiltonian,

H[Hgrad1Hcoupl1H focus, ~9!

Hgrad[
i

2E2`

1`S u1*
]u1

]x
2u2*

]u2

]x Ddx1c.c., ~10!
6-3
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Hcoupl[2E
2`

1`

@u1* u21ku3* ~u11u2!#dx1c.c., ~11!

H focus[2E
2`

1`F1

2
a2s1~ uu1u41uu2u4!

1
1

2
s3uu3u41a2uu1u2uu2u21auu3u2~ uu1u2

1uu2u2!Gdx, ~12!

and the momentum, which will not be used here. In th
expressions, the asterisk and c.c. both stand for complex
jugation,Hgrad, Hcoupl, andH focusbeing the gradient, linear
coupling, and self-focusing parts of the Hamiltonian. To o
tain the Eqs.~4!–~6! from the Hamiltonian, the conjugat
pairs of the variables are defined, in a standard fashion
un ,un* .

Our objective is to find various types of solitons existi
in the generic three-wave systems~4!–~6! and investigate
their stability. Focusing first on the case~suggested by the
analogy with GMTM! when the SPM term in Eq.~6! may be
neglected~i.e., s350), in Sec. III we find a general family
of zero-velocity solitons in an exact analytical form. We w
demonstrate that they are of two drastically different typ
regular GS, andcuspons, i.e., solitons with a cusp singularit
at the center, in which the soliton amplitude is finite, but t
derivative is infinite; further, the energy of the cuspons
finite. Cuspons are known to exist in degenerate mod
without linear terms~except for the evolution term such a
]u/]t), i.e., without a linear spectrum, a well-known e
ample being the exactly integrable Camassa-Holm~CH!
equation@13,14# ~see also@15#!. Our model resembles th
CH one in the sense that both give rise to coexisting so
tions in the form of regular solitons and cuspons. The ca
for the existence of these singular solitons in our model is
fact that, looking for a zero-velocity soliton solution, on
may eliminate the fieldu3 by means of an algebraic relatio
following, in this case, from Eq.~6!. The subsequent subst
tution of that result into the first two Eqs.~4! and ~5! pro-
duces arational nonlinearity in them, the corresponding r
tional functions featuring a singularity at some~critical!
value of the soliton’s amplitude. If the amplitude of
regular-soliton solution is going to exceed the critical valu
it actually cannot exist, and in the case whens350 it is
replaced by a cuspon, whose amplitude is exactly equa
the critical value.

In the limit k→0, which corresponds to the vanishin
linear coupling between the first two and third waves,
cuspon resembles apeakon, which is a finite-amplitude soli-
tary wave with a jump of its first derivative at the cente
Note that peakon solutions, coexisting with regular solito
~this property is shared by our model!, are known in a
slightly different ~also integrable! version of the CH equa
tion, see, e.g., Refs.@13,16,17#. We also note that soliton
solutions with a discontinuity in the first derivative hav
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been found in the BG model~which does contain a linea
part! in the case where the grating parameter chan
abruptly @18#.

Then, we show that, when the SPM term is restored in
~6! @i.e., s3Þ0; the presence or absence of the SPM ter
;s1 in Eqs.~4! and~5! is not crucially important#, the sys-
tem supports a different set of soliton solutions. These
regular GS and, depending on the sign of certain parame
a family of peakons, which, this time, appear as generic
lutions, unlike the cases350, when they only exist as a
limiting form of the cuspon solutions corresponding tok
→0. As far as we know, the model formulated in the pres
paper is the first spatially uniform nondegenerate one~i.e., a
model with a nonvanishing linear part! which yields both
cuspons and peakons.

B. Stability of solitons and spatiotemporal collapse

As concerns the dynamical stability of the various solito
in the models~4!–~6!, in this work we limit ourselves to
direct simulations, as a more rigorous approach, based
numerical analysis of the corresponding linear stabili
eigenvalue problem@19#, is technically difficult in the case
of cuspons and peakons~results of such an analysis, based
the Evans-function technique, will be presented elsewhe!.
In fact, direct simulations of perturbed cuspons and peak
is a hard problem too, but we have concluded that ident
results concerning the stability are produced~see Sec. III
below! by high-accuracy finite-difference and pseudospec
methods~each being implemented in more than one parti
lar form!, which lends the results credibility. A general co
clusion is that the regular solitons are always stable. As
the cuspons and peakons, they may be either stable or
stable.

If the cusp is strong enough, the numerical results p
sented below demonstrate that the instability of a cus
initiates formation of a genuine singularity, i.e., onset of
spatiotemporal collapse@20# in the present one-dimensiona
model. Before proceeding to the consideration of solitons
the following sections, it is relevant to discuss collapse p
nomenon in some detail.

A simple virial-type estimate for the possibility of th
collapse can be done, assuming that the field focuses itse
a narrow spot with a size (t), amplitude:(t), and a charac-
teristic valueK(t) of the field’s wave number@20#. The con-
servation of the norm~8! imposes a restriction:2L;N, i.e.,
L;N/:2. Next, the self-focusing part~9! of the Hamiltonian
~9!, which drives the collapse, can be estimated as

H focus;2:4L;2N:2. ~13!

On the other hand, the collapse can be checked by the
dient term ~10! in the full Hamiltonian, that, in the sam
approximation, can be estimated asHgrad;:2KL;NK. Fur-
ther, Eqs.~4!–~6! suggest an estimateK;:2 for a character-
istic wave number of the wave field@the same estimate forK
follows from an expression~21! for the exact stationary-
soliton solution given below#, thus we haveHgrad;N:2.
Comparing this with the expression~13!, one concludes tha
the parts of the Hamiltonian promoting and inhibiting th
6-4
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collapse scale the same way as:→` ~or L→0), hence a
weak collapse@20# may be possible~but does not necessaril
take place! in systems of the present type. We stress that
one-dimensional models of GS studied thus far and base
GMTM, collapse has never been reported. Thereal existence
of the collapse in the present one-dimensional three-w
GS model, which will be shown in detail below as a result
numerical simulations, is therefore a novel dynamical f
ture, and it seems quite natural that cuspons and peakon
the case when they are unstable, play the role of catal
stimulating the onset of the collapse. The possibility of a r
collapse in a one-dimensional~1D! system is quite interest
ing by itself, and also because experimental observation
spatiotemporal self focusing in nonlinear optical media i
subject of considerable interest, see, e.g., Ref.@21#.

II. ANALYTICAL SOLUTIONS

A. The dispersion relation

The first step in the investigation of the system is to u
derstand its linear spectrum. Substitutingu1,2,3;exp(ikx
2ivt) into Eqs. ~4!–~6!, and omitting nonlinear terms, w
arrive at a dispersion equation,

~v22k221!~v2v0!52k2~v21!. ~14!

If k50, the third wave decouples, and the coupling betw
the first two waves produces a commonly known gap, so
the solutions to Eq.~14! arev1,256A11k2 andv35v0. If
kÞ0, the spectrum can be easily understood by treatingk as
a small parameter. However, the following analysis is va
for all values ofk in the range 0,k2,1.

First, consider the situation whenk50. Three solutions of
Eq. ~14! are then

v51, v5v6[~v021!/26A~v011!2/412k2. ~15!

It can be easily shown thatv2,min$v0,21%<max$v0,21%
,v1 , so that one always hasv2,21, while v1,1 if
v0,12k2, and v1.1 if v0.12k2. Next, it is readily
seen that, ask2→`, eitherv2'k2, or v'v0. Each branch
of the dispersion relation generated by Eq.~14! is a mono-
tonic function ofk2. Generic examples of the spectrum a
shown in Fig. 2, where the panels~a! and~b! pertain, respec-
tively, to the casesv0,12k2 with v1,1, andv0.1 with
v1.1. The intermediate case, 12k2,v0,1, is similar to
that shown in panel~a!, but with the pointsv1 and 1 atk
50 interchanged. Whenv0,1, the upper gap in the spec
trum is min$v1,1%,v, max$v1,1%, while the lower gap is
v2,v,v0. When v0.1, the upper gap isv0,v,v1 ,
and the lower one isv2,v,1.

B. Gap solitons

The next step is to search for GS solutions to the
nonlinear system. In this work, we confine ourselves to
case of zero-velocity GS, substituting into Eqs.~4!–~6!

un~x,t !5Un~x!exp~2 ivt !, n51,2,3, ~16!
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where it is assumed that the soliton’s frequencyv belongs to
one of the gaps. In fact, even the description of zero-velo
solitons is quite complicated. Note, however, that if one s
k50 in Eqs.~4!–~6!, keeping nonlinear XPM couplings be
tween the first two and third waves, the gap which exists
the two-wave GMT model remains unchanged, and the c
responding family of GS solutions does not essentially al
in accord with the principle that nonlinear couplings cann
alter gaps or open a new one if the linear coupling is abs
@12#; nevertheless, the situation is essentially different ifk is
vanishingly small, but not exactly equal to zero, see belo

The substitution of Eq.~16! into Eqs.~4! and~5! leads to
a system of two ordinary differential equations forU1(x)
andU2(x), and an algebraic relation forU3(x),

iU 185vU11U21kU31a~as1uU1u21auU2u2

1uU3u2!U1 , ~17!

2 iU 285vU21U11kU31a~as1uU2u21auU1u2

1uU3u2!U2 , ~18!

~v02v1s3uU3u21auU1u21auU2u2!U35k~U11U2!,

~19!

where the prime stands ford/dx. To solve these equations
we substituteU1,25A1,2(x)exp@if1,2(x)# with real An and
fn . After substituting the expression~19! into Eqs.~17! and
~18!, and some simple manipulations, it can be found t
(A1

22A2
2)850 and (f11f2)850. Using the condition that

the soliton fields vanish at infinity, we immediately conclu
that

A1
2~x!5A2

2~x![S~x!; ~20!

FIG. 2. Dispersion curves produced by Eq.~14! in the casek
50.5: ~a! v0,12k2; ~b! v0.1. The dashed line in each panel
v5v0. The case with 12k2,v0,1 is similar to case~a! but with
the pointsv1 and 1 atk50 interchanged.
6-5
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GRIMSHAW, MALOMED, AND GOTTWALD PHYSICAL REVIEW E 65 066606
as for the constant value off11f2, it may be set equal to
zero without loss of generality, so thatf1(x)52f2(x)
[f(x)/2, wheref(x) is the relative phase of the two field
After this, we obtain two equations forS(x) andf(x) from
Eqs.~17! and ~18!,

f8522v22 cosf22a2~11s1!S

2S21U3
2~v02v2s3U3

2!, ~21!

S8522Ssinf22kASU3 sin~f/2!, ~22!

and Eq.~19! for the third waveU3 takes the form of a cubic
algebraic equation

U3~v02v22aS2s3uU3u2!52kAScos~f/2!, ~23!

from which it follows thatU3 is a real-valued function.
This analytical consideration can be readily extended

more general Eqs.~4! and ~5! that do not assume the sym
metry between the wavesu1 and u2, i.e., with the group-
velocity terms in the equations altered as in Eq.~7!. In par-
ticular, the relation ~20! is then replaced byc1A1

2(x)
5c2A2

2(x)[S(x). The subsequent analysis is similar to th
above, and leads to results for the asymmetric model tha
qualitatively similar to those presented below for the sy
metric case.

Equations~21! and ~22! have a Hamiltonian structure, a
they can be represented in the form

dS

dx
5

]H

]f
,

df

dx
52

]H

]S
, ~24!

with the Hamiltonian

H52Scosf1a2~11s1!S2

12vS1U3
2~v02v22aS!2

3

2
s3U3

4 , ~25!

which is precisely a reduction of the Hamiltonian~9! of the
original systems~4!–~6! for the solutions of the present type
Note thatH is here regarded as a function ofSandf, and the
relation~23! is regarded as determiningU3 in terms ofSand
f. We stress that the dependenceU3(S,f) was taken into
account when deriving the Hamiltonian representation~24!.

For soliton solutions, the boundary conditions atx56`
yield H50 so that the solutions can be obtained in an i
plicit form,

2Scosf1a2~11s1!S212vS

1U3
2~v02v22aS!2~3/2!s3U3

450. ~26!

In principle, one can use the relations~23! and~26! to elimi-
nateU3 andf and so obtain a single equation forS. How-
ever, this is not easily done unlesss350 @no SPM term in
Eq. ~6!#, and so we proceed to examine this special,
important, case first. Note that the no-SPM case also play
important role for GMTM, which is exactly integrable b
means of the inverse scattering transform just in this case@1#.
06660
r

t
re
-

-

t
an

C. Cuspons, the cases3Ä0

Settings350 makes it possible to solve Eq.~23! for U3
explicitly in terms ofS andf,

U35
2kAScos~f/2!

v02v22aS
. ~27!

For simplicity, we also sets150 in Eqs. ~4! and ~5! and
subsequent equations, although the latter assumption is
crucially important for the analysis developed below. Inde
the analysis is based on the fact that the fieldU3 can be
explicitly eliminated by means of Eq.~27!, which is not af-
fected bys1. If s1 is kept in the system, it merely renorma
izes some coefficients in the formulas derived below.

At the next step, one can also eliminatef, using Eqs.~26!
and ~27!, to derive a single equation forS,

~dS/dx!254S2F~S!, ~28!

F~S![S 12v2
1

2
a2SD

3F2S 11
k2

v02v22aSD2S 12v2
1

2
a2SD G . ~29!

The functionF(S) has either one or three real zerosS0. One
is

S0152~12v!/a2, ~30!

and the remaining two, if they exist, are real roots of t
quadratic equation,

~212v1a2S0!~v02v22aS0!14k250. ~31!

Only the smallest positive real root of Eq.~31!, to be denoted
S02 ~if such exists!, will be relevant below. Note, inciden
tally, that F(S) cannot have double roots. It is easy to s
that a consequence of this fact is that Eq.~28! cannot gener-
ate kink solutions, which have different limits asx→6`, for
both of which the right-hand side of Eq.~28! must have a
double zero.

For a bright-soliton solution of Eq.~28!, we need first that
F(0).0 ~in this paper, we do not consider dark solitons, n
‘‘antidark’’ solitons, i.e., solitons on top of a finite-amplitud
flat background, a reason being that there is little chance
the flat background would be modulationally stable!. Com-
paring the conditionF(0).0 with the expressions given in
Sec. II A for the gaps in the linear spectrum, it is read
shown that this condition is exactly equivalent to requiri
that v belongs to either the upper or the lower gap of t
linear spectrum. We note that the coupling to the third wa
gives rise to nonlinearity of the rational type in the expre
sion~29!, despite the fact that the underlying systems~4!–~6!
contain only cubic polynomial nonlinear terms. Even if th
coupling constantk is small, it is clear that the rational non
linearity may produce a strong effect in a vicinity of acriti-
cal valueof the squared amplitude at which the denomina
in the expression~29! vanishes,
6-6



on

th
b
M

-
l

l-
he
ly
to
e
a

r,

on
t

e

b
d

a

th

-

s

d

e
is

n’s

er

f

ari-

ing

ion

p

h
s it

.
olu-

is

SINGULAR AND REGULAR GAP SOLITONS . . . PHYSICAL REVIEW E 65 066606
Scr5~v02v!/2a, ~32!

where one must havea(v02v).0 ~otherwise, this critical
value is not relevant!.

If Scr.0, the structure of the soliton crucially depends
whether, with an increase ofS, the functionF(S) defined by
Eq. ~29! first reaches zero atS5S0.0 ~i.e., eitherS5S01 or
S5S02, whichever is the smaller positive value!, or, instead,
it first reaches the singularity atS5Scr , i.e., whether 0,S0
,Scr , or 0,Scr,S0. In the former case, the existence ofScr
plays no role, and the soliton is a regular one, having
amplitudeAS0. This soliton may be regarded as obtained
a smooth deformation from the usual GS known in GMT
at k50.

In the case 0,Scr,S0, as the soliton cannot have an am
plitude larger thanAScr, the amplitude takes this critica
value. The soliton is singular in this case, being acuspon
~see details below!, but, nevertheless, it is an absolutely re
evant solution. The remaining possibilities are that eit
Scr,0 andS0.0, or vice versa; then the soliton may on
be, respectively, regular or singular. Of course no soli
exists if both S0 and Scr are negative. Further, using th
symmetries of the equations, it is readily shown that for
these soliton solutions,S(x) is symmetric about its cente
which may be set atx50, that is,S(x) is an even function of
x. For the cuspon solutions, and for those regular soluti
whose squared amplitude isS01, it can also be shown tha
the phase variablec(x)5f(x)2p andU3(x) are odd func-
tions of x, while for those regular solutions whose squar
amplitude isS02 the phase variablef(x) and U3(x) are,
respectively, odd and even functions ofx.

It is now necessary to determine which parameter com
nations in the set (v,v0 ,a) permit the options describe
above. The most interesting case occurs whenv0.v ~so
that v belongs to the lower gap, see Fig. 2! and a.0 ~the
latter condition always holds in the applications to nonline
optics!. In this case, it can be shown that the rootS02 of Eq.
~31! is not relevant, and the options are determined by
competition betweenS01 and Scr . The soliton is a cuspon
(0,Scr,S01) if

a~v02v!,4~12v!. ~33!

In effect, the condition~33! sets an upper bound ona for
given v0 andv. In particular, this condition is always satis
fied if 0,a,4.

If, on the other hand, the condition~33! does not hold
~i.e., 0,S01,Scr), we obtain a regular soliton. In a les
physically relevant case, when againv0.v but a,0, cus-
pons do not occur@as this timeScr,0, see Eq.~32!#, and
only regular solitons may exist.

Next we proceed to the casev0,v, so thatv is located
in the upper gap of the linear spectrum. Fora.0, we have
Scr,0, hence, only regular solitons may occur, and indee
this case there is always at least one positive rootS0, so a
regular soliton does exist. Ifa,0, then we haveScr.0, but
if v0,12k2 ~when alsov,1), there is at least one positiv
root S0,Scr ; thus, only a regular soliton can exist in th
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case too. On the other hand, ifa,0 andv0.12k2 ~and
thenv.1), there are no positive rootsS0, and so only cus-
pons occur.

Let us now turn to a detailed description of the cuspo
local structure near its center, whenS is close toScr . From
the above analysis, one sees that cuspons occur whenevv
lies in the lower gap, withv0.v and a.0, so that the
criterion ~33! is satisfied, or whenv lies in the upper gap
with 12k2,v0,v and a,0. To analyze the structure o
the cuspon, we first note that, as it follows from Eq.~26!, one
has cosf521 ~i.e., f5p) whenS5Scr , which suggest to
set

Scr2S[d~k2R!, 11cosf[dr, ~34!

whered is a small positive parameter, and the stretched v
ablesR andr are positive. At the leading order ind, it then
follows from Eq.~26! that r5r0R, where

r0[a3~S012Scr!. ~35!

As it follows from the above analysis,r0 is always positive
for a cuspon. We also stretch the spatial coordinate, defin
x[d3/2k2y, the soliton center being atx50. SinceS(x) is
an even function ofx, it is sufficient to setx.0 in this
analysis. Then, on substituting the first relation from Eq.~34!
into Eq. ~28!, we get, to the leading order ind, an equation

R~dR/dy!25r0Scr
2 /a2[K2, ~36!

so that

R5~3Ky/2!2/3. ~37!

Note that in the original unstretched variables, the relat
~37! shows that, near the cusp,

Scr2S~x!'~3Kkx/2!2/3, ~38!

dS/dx'~2/3!1/3~Kk!2/3x21/3, ~39!

and it follows from Eq.~27! that U3 is unbounded near the
cusp,

U3'~Scr /a!~2ar0K2/3kx!1/3. ~40!

In particular, Eq.~39! implies that, asKk decreases, the cus
gets localized in a narrow region whereuxu&K2k2 ~outside
this region,udS/dxu is bounded and shows no cusp!. Note
that this limit can be obtained either ask2→0, or asr0
→0 @recall thatr0 is defined in Eq.~35!#.

An example of the cuspon is shown in Fig. 3. Althoug
the first derivative in the cuspon is singular at its center, a
follows from Eq. ~39! @see also Fig. 3~a!#, and itsU3 com-
ponent diverges atx→0 as per Eq.~40!, it is easily verified
that the value of the Hamiltonian~9! @and, obviously, the
value of the norm~8! too# is finite for the cuspon solution
These solitons are similar to cuspons found as exact s
tions to the Camassa-Holm~CH! equation@13,14#, which
have a singularity of the typeuxu1/3 or uxu2/3 as uxu→0, cf.
Eqs. ~38! and ~39!. The CH equation is integrable, and it
6-7
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GRIMSHAW, MALOMED, AND GOTTWALD PHYSICAL REVIEW E 65 066606
degenerate in the sense that it has no linear terms excep
]u/]t ~which makes the existence of the solution with a cu
singularity possible!. Our three-wave system~4!–~6! is not
degenerate in that sense; nevertheless, the cuspon so
are possible in it because of the model’s multicompon
structure: the elimination of the third component genera
the nonpolynomial nonlinearity in Eqs.~17! and ~18!, and,
finally, in Eqs.~22! and~28!, which gives rise to the cusp. I
is noteworthy that, as well as the CH model, ours gives
to two differentcoexistingfamilies of solitons, viz., regular
ones and cuspons. It will be shown below that the solitons
both types may be stable.

Of course, the presence of the singularities inU3(x) and
dS/dx at x→0 suggests that higher-order terms, such as
higher-order dispersion, should be taken into regard in
case. The fact that the cuspon’s Hamiltonian converges
spite these singularities, as well as a direct analysis, sug
that such higher-order terms will smooth the shape of
cuspon in a very narrow layer for smallx, allowing for large
but not diverging values of the fields. However, the sm
higher-order terms will not essentially alter the global sha
of the cuspons. In the next section we will show that, in fa
the genuine generic singular solitons are~in the presence o
the SPM terms! peakons, for which the singularities a
much weaker, hence, the latter issue is still less signific
Besides that, it appears to be an issue of principal intere
understand what types of solitons the system may gene
without intrinsic dispersion~cf. the situation for the tradi-
tional GMTM, in which the spectrum of soliton solutions
completely altered by the addition of intrinsic dispersi
@22#!.

FIG. 3. The shape of the cuspon fora52.0, v050.1, v5
20.5, and~a! k50.5, i.e., in the general case, and~b! k50.1, i.e.,
for small k. In case~b! we also show the usual gap soliton~by the
dashed line!, the part of which above the critical valueS5Scr

~shown by the dotted line! should be removed and the remainin
parts brought together to form the peakon corresponding tor0k2

→0.
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In the special casek!1, when the third component i
weakly coupled to the first two in the linear approximatio
~in terms of the optical model represented by Fig. 1, it is
case when the subgratings shown by the dashed lines
very weak!, straightforward inspection of the above resu
shows that the cuspons look likepeakons; that is, except for
the above-mentioned narrow region of the widthuxu;k2,
where the cusp is located, they have the shape of a so
with a discontinuity in the first derivative ofS(x) and a jump
in the phasef(x), which are the defining features of peako
~@13,16#!. A principal difference of true peakons from cu
pons is that the first derivative does not diverge inside
peakon, but is of course, discontinuous.

An important result of our analysis is that the family
solitons obtained in the limitk→0 is drastically different
from that in the model where one setsk50 from the very
beginning. In particular, in the most relevant case, withv0
.v and a.0, the family corresponding tok→0 contains
regular solitons whose amplitude is smaller thanAScr; how-
ever, the solitons whose amplitude atk50 is larger than
AScr, i.e., the ones whose frequencies belong to the ra
~33! @note that the definition ofScr does not depend onk at
all, see Eq.~32!#, are replaced by the peakons which a
constructed in a very simple way: drop the part of the us
soliton above the critical levelS5Scr , and bring together the
two symmetric parts which remain below the critical leve
see Fig. 3~b!.

It is interesting that peakons are known as exact soluti
to a version of the integrable CH equation slightly differe
from that which gives rise to the cuspons. As well as in t
present system, in that equation the peakons coexist
regular solitons@16#. In the next section, we demonstrate th
the peakons, which are found only as limit-form solutions
the no-SPM cases350, become generic solutions in th
cases3Þ0.

D. Peakons, the cases3Å0

A natural question is whether the cuspon solutions
structurally stable, i.e., if they will persist on inclusion of
terms that were absent in the analysis presented above~the
other type of the stability, viz., dynamical stability again
small initial perturbations, will be considered in the next se
tion!. Here, we address this issue by restoring the SPM t
in Eq. ~6!, that is, we now sets3Þ0, but assume that it is a
small parameter. Note that, in the application to nonlin
optics, one should expect thats3.0, but there is no such
restriction on the sign ofs3 in the application to the flow of
a density-stratified fluid. We still keeps150, as the inclu-
sion of the corresponding SPM terms in Eqs.~4! and ~5!
amounts to trivial changes both in the above analysis, an
that presented below. On the other hand, we show below
the inclusion of the SPM term in Eq.~6! is a structural per-
turbation which drastically changes the character of the s
ton solutions.

In view of the above results concerning the cuspons,
restrict our discussion here to the most interesting case w
S(x) is an even function ofx, while c(x)5f(x)2p and
U3(x) are odd functions. In principle, one can use the re
tions ~23! and ~26! to eliminatef and U3 and so obtain a
6-8
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single equation forS @a counterpart to Eq.~28!#, as it was
done above whens350. However, whens3Þ0, it is not
possible to do this explicitly. Instead, we shall develop
asymptotic analysis valid forx→0, which will be combined
with results obtained by direct numerical integration of E
~21! and ~22!, subject of course to the constraints~23! and
~26!. Since singularities only arise at the center of the soli
~i.e., atx50) whens350, it is clear that the introduction o
a smalls3Þ0 will produce only a small deformation of th
soliton solution in the region wherex is bounded away from
zero.

First, we consider regular solitons. Because the left-h
side of Eq.~23! is not singular at anyx, including the point
x50, whens350, we expect that regular solitons survive
perturbation induced bys3Þ0. Indeed, if there exists a regu
lar soliton, with S0[S(x50), andf(x50)5p and U3(x
50)50, it follows from Eq.~26! that the soliton’s amplitude
remains exactly the same as it was fors350, due to the fact
that the regular soliton hasU3(x50)50.

Next, we turn to the possibility of singular solutions, th
is, cuspons or peakons. Since we are assuming thaS0
5S(x50) is finite, and thatf(x50)5p, it immediately
follows from Eq. ~23! that whens3Þ0, U3 must remain
finite for all x, taking some valueU0Þ0, say, asx→10.
SinceU3 is an odd function ofx, andU0Þ0, there must be
a discontinuity in U3 at x50, i.e., a jump fromU0 to
2U0. This feature is in marked contrast to the cuspons
which U3 is infinite at the center, see Eq.~40!. Further, it
then follows from Eq.~22! that, asx→0, there is also a
discontinuity in dS/dx, with a jump from 2kU0AS0 to
22kU0AS0. Hence, if we can find soliton solutions of th
type, withU0Þ0, they are necessarilypeakons, and we infer
that cuspons donot survive the structural perturbation in
duced bys3Þ0.

Further, if we assume thatU0Þ0, then Eq.~23!, taken in
the limit x→0, immediately shows that

2a~Scr2S0!5s3U0
2 ~41!

@recall thatScr is defined by Eq.~32!#. Next, the Hamiltonian
relation ~26!, also taken in the limitx→0, shows that

2
r0

a
S02a2S0~Scr2S0!5

1

2
s3U0

4 , ~42!

where we have used Eq.~41! @recall thatr0 is defined by Eq.
~35!#. Elimination of U0 from Eqs. ~41! and ~42! yields a
quadratic equation forS0, whose positive roots represent th
possible values of the peakon’s amplitude.

We recall that for a cuspon which exists ats350 one has
r0.0, i.e., the amplitude of the corresponding formal reg
lar soliton exceeds the critical value of the amplitude, see
~35!. Then, if we retain the conditionr0.0, it immediately
follows from Eqs.~41! and~42! that no peakons may exist
the SPM coefficient in Eq.~6! is positive,s3.0. Indeed, Eq.
~41! shows thatScr2S0.0 if s3.0, which, along withr0
.0, leads to a contradiction in the relation~42!.

Further, it is easy to see that a general condition for
existence of peakons following from Eqs.~41! and ~42! is
06660
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s3r0,0, ~43!

hence, peakons are possible ifs3,0, or if we keeps3.0
but allow r0,0. In the remainder of this section, we wi
show that peakons may exist only ifr0.0. Hence, it follows
from the necessary condition~43! that peakons may indee
be possible solely in the cases3,0. On the other hand
regular solitons do exist in the cases3.0 ~i.e., in particular,
in nonlinear-optics models!, as they haveU050, hence, nei-
ther Eq.~41! nor its consequence in the form of the inequ
ity ~43! apply to regular solitons. The existence of~stable!
peakons fors3,0, and of~also stable! regular solitons for
s3.0 will be confirmed by direct numerical results pr
sented in the next section.

To obtain a necessary condition~which will take the form
of r0.0) for the existence of the peakons, we notice that
existence of any solitary wave implies the presence of clo
dynamical trajectories in the phase plane of the correspo
ing dynamical system, which is based on the ordinary diff
ential Eqs.~21! and ~22!, supplemented by the constrain
~23!. Further, at least one stable fixed point~FP! must exist
inside such closed trajectories, therefore the existence
such a stable FP is a necessary condition for the existenc
any solitary wave.

The FPs are found by equating to zero the right-ha
sides of Eqs.~21! and ~22!, which together with Eq.~23!
give three equations for the three coordinatesf,S andU3 of
the FP. First of all, one can find a trivial unstable FP of t
dynamical system,

cosf52
v1k2/~v02v!

11k2/~v02v!
, S50,

which does not depend ons3. Then, three nontrivial FPs ca
be found, with their coordinatesf* , S* , andU3* given by
the following expressions:

f
*
(1)5p, S

*
(1)5

12v

a2
5

1

2
S01, U3*

(1)50, ~44!

f
*
(2)5p, ~22s3!S

*
(2)52Scr2

s3

2
S01,

~22s3!@aU3*
(2)#25r02a3Scr , ~45!

~22s3!S
*
(3)52Scr2

1

2
s3S011

k2

a
,

~22s3!@aU3*
(3)#25r02a3Scr2a2k2,

cos~f
*
(3)/2!52

1

2
kU3*

(3)/AS
*
(3), ~46!

where the superscript is a number label for the FP. To
specific, we now consider the case of most interest, w
both S01.0 andScr.0. In this case, the FP given by Eq
~44! exists for alls3 and allr0. However, for smalls3 ~in
fact s3,2 is enough! and smallk, the FPs given by Eqs
6-9
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GRIMSHAW, MALOMED, AND GOTTWALD PHYSICAL REVIEW E 65 066606
~45! and~46! exist only whenr0.0. Indeed, they exist only
for r0.a3S01 andr0.a3S011k2, respectively, or, on using
the definition ~35! of r0, when S01.2Scr and S01.2Scr
1k2/a, respectively.

Let us first suppose thatr0,0. Then there is only the
single nontrivial FP, namely, the one given by Eqs.~44!. This
FP is clearly associated with the regular solitons, whose
plitude at the crest isS01. Hence, we infer that forr0,0
there are no other solitary-wave solutions, and in particu
no peakons~and no cuspons whens350 either, in accor-
dance with what we have already found in Sec. II C abov!.
When combined with the necessary condition~43! for the
existence of peakons, we infer that there are no peak
when s3.0, thus excluding peakons from applications
the nonlinear-optics models, where this SPM coefficien
positive. However, peakons may occur in density-stratifi
fluid flows, where there is no inherent restriction on the s
of s3. This case is considered below, but first we note tha
the caser0,0 ands3.0 ~which includes the application
to nonlinear optics!, the same arguments suggest that th
may beperiodic solutions with a peakon-type discontinui
at the crests; indeed, our numerical solutions of the syst
~21! and ~22! show that this is the case.

Next, we suppose thatr0.0. First, if S01,2Scr then there
is again the single nontrivial FP given by Eq.~44!. But now,
by analogy with the existence of cuspons whenr0.0 and
s350, we infer that the solitary wave solution which is a
sociated with this fixed point is a peakon, whose squa
amplitudeS0 for small s3 is close toScr , while the FP has
S
*
(1)5S01/2,Scr .

If, on the other hand,S01.2Scr , the FPs given by Eqs
~45! and ~46! become available as well. We now infer th
the peakon solitary-wave solution continues to exist, and
sufficiently smalls3 andk it is associated with the FP give
by Eq. ~45!. Although Eq.~45! implies thatS

*
(2)'Scr , and

the peakon’s squared amplitudeS0, determined by Eqs.~41!
and~42!, is also approximately equal toScr , we nevertheless
haveS0.S

*
(2) as required. Note that, in the present case,

FPs given by Eqs.~44! and ~46! lie outside the peakon’s
homoclinic orbit. In Fig. 4, we show a plot of a typical pe
kon obtained, in this case, by numerical solution Eqs.~21!
and ~22!.

III. NUMERICAL RESULTS

A. Simulation techniques

The objectives of direct numerical simulations of the u
derlying Eqs.~4!–~6! were to check the dynamical stabilit
of regular solitons, cuspons, and peakons in the cases350,
and the existence and stability of peakons in the more g
eral case,s3Þ0. Both finite-difference and pseudospect
numerical methods have been used, in order to check tha
same results are obtained by methods of both types. We
semi-implicit Crank-Nicholson schemes, in which the no
linear terms were treated by means of the Adams-Bashf
method.

The presence of singularities required a careful treatm
of cuspon and peakon solutions. To avoid numerical ins
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bilities due to discontinuities, we found it, sometimes, be
eficial to add an artificial weak high-wave-number viscos
to the pseudospectral code. This was done by adding lin
damping terms to the right-hand side of Eqs.~4!, ~5!, and~6!,
which have the form2 in(k)k2ûn in the Fourier representa
tion, where ûn is the Fourier transform ofun (n51,2,3).
The high-pass filter viscosityn(k) suppresses only high
wave numbers and does not act on others. In particular,
chose

n~k!55
0 if uku,

5

16
K,

hS 16uku
K

25D if
5

16
K,uku,

3

8
K,

h if uku.
3

8
K,

whereK is the largest wave number in the actual numeri
scheme, andh is a small viscosity coefficient. We hav
found thath;1025 was sufficient to avoid Gibbs’ phenom
enon in long-time simulations.

When instabilities occur at a singular point~cusp or peak!,
it is hard to determine whether the instability is a real one,
a numerical artifact. Therefore, we checked the results
means of a finite-difference code which used an adap
staggered grid; motivated by the analysis of the vicinity
the point x50 reported above, we introduced the variab
j[x2/3 to define an adaptive grid, and also redefinedU3

[AjŨ3. In these variables, the cusp becomes a reg
point. This approach was solely used to check the poss
occurrence of numerical instabilities.

In the following sections we present typical examples
the numerical results for both cases considered above,
s350 ands3,0, when, respectively, cuspons and peako
are expected.

B. Cases3Ä0

First, we report results obtained for the stability of regu
solitary waves in the cases350. As initial configurations,

FIG. 4. The shape of the peakon for the case whens3,0,
where we plotuU1u2. The parameters ares3520.01, k50.1, a
52.0, v050.1, andv520.5. In this case,r054.8.
6-10
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SINGULAR AND REGULAR GAP SOLITONS . . . PHYSICAL REVIEW E 65 066606
we used the corresponding stationary solutions to Eqs.~21!
and ~22!. To test the stability of the regular solitary wave
we added small perturbations to them. As could be ant
pated, the regular solitary wave sheds off a small disper
wave train and relaxes to a stationary soliton, see Fig. 5~for
a more detailed illustration of the generation of small ra
ated waves by a soliton, see also Fig. 8 below!. If, however,
a regular soliton is taken as an initial condition for parame
values inside, but close to the border of the cuspon regio
does not become unstable in this slightly modified section
parameter space~which only supports cuspons!, but instead
this soliton exhibits persistent internal vibrations, see an
ample in Fig. 6. These and many other simulations clea
show that the regular soliton is always stable, and, clos
the parameter border with cuspons, it has a persistent inte
mode.

FIG. 5. The shape of an initially perturbed regular soliton in t
cases350 at t55, which illustrates the stabilization of the solito
through the shedding of small-amplitude radiated waves. The
displayed is the field ReU1(x). The parameters arek50.01, a
51.0, v050.2, andv50.9.

FIG. 6. Internal vibrations of an initially perturbed regular so
ton, which was taken close to the parameter boundary of the cu
region. The plot shows the squared amplitudea[uU1(x50)u2 of
the U1(x) field versus time. The parameters arek50.01, a
51.9, v051.5, andv50.5, with r050.095@see Eq.~35!#.
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It was shown analytically above that Eqs.~17! and ~18!
~with s350) support peakons whenr0.0 andr0k2 is very
small. Direct simulations show that peakons do exist in t
case, and they may be either unstable or stable. In the
when they are unstable, a high-wave-number instability
velops around the central peak. In Fig. 7, we display the ti
evolution of a typical stable peakon.

Next, we look at what happens if we take a regular solit
as an initial condition in a section of the parameter sp
which supports only stable peakons. This enables us to s
the competition of the structural stability of regular solito
~as confirmed in Fig. 6! and the stability of peakons. Th
initial condition is taken as a stationary regular soliton in t
parameter region~close to the boundary of the peakon r
gion! with r0,0, whereas the simulations are run for valu
of the parameters corresponding tor0.0, which only admits
peakons and excludes regular solitons. Unlike the c
shown in Fig. 6, the time evolution now does not exhi
internal vibrations. Instead, the pulse slowly decays into
diation. This outcome can be explained by the fact that
peakon’s norm@see Eq.~8!# turns out to be larger than that o
the initial pulse in this case, hence, its rearrangement in
stable peakon is not possible. An essential result reveale
the simulations is that cuspons may also bestable, a typical
example being displayed in Fig. 8. In this figure, one can
a small shock wave which is initially generated at the c
pon’s crest. It seems plausible that this shock wave is ge
ated by some initial perturbation which could be a result

ot

on

FIG. 7. An example of a stable peakon. The plot shows the fi
uU1u2 versusx and t. The parameters arek51.0, a51.95, v0

51.5, andv50.5, with r050.04875.
6-11



m
a

he
ta
at
a
a
,
e

on
p
n
n
th

to
Ty
ra

se

a
s

ite

of
yed
ing
ed-

the
the

la-
ic-

ve
tails
ular

el

in
f

y
pa-

GRIMSHAW, MALOMED, AND GOTTWALD PHYSICAL REVIEW E 65 066606
the finite mesh size in the finite-difference numerical sche
employed for the simulations. In fact, the emission of
small-amplitude shock wave is quite a typical way of t
relaxation of both cuspons and peakons to a final stable s
To make sure that the shock wave is not an artifact gener
by the numerical scheme, we have checked that its sh
does not change with the increase of the numerical accur

To further test the stability of the cuspons and peakons
many cases we allowed the initially generated shock wav
reenter the integration domain~due to periodic boundary
conditions used in the simulations! and interact again with
the cuspon or peakon. As a result, the stability of the solit
of these types has been additionally confirmed. An exam
of the spatial profile of the cuspon established after a lo
evolution is shown in Fig. 9. Both the stability of the cuspo
and the presence of a tiny shock wave are evident in
figure.

However, unlike the regular solitons, which were found
be always stable, the cuspons are sometimes unstable.
cally, their instability triggers the onset of spatiotempo
collapse, i.e., formation of a singularity in a finite time~see a
discussion of the feasible collapse in systems of the pre
type, given in the Introduction!. Simulations of the collapse
were possible with the use of an adaptive grid. A typic
example of the collapse is shown in Fig. 10, where the in
shows that~within the numerical accuracy available! the am-
plitude of the collapsing pulse indeed diverges in a fin
time.

FIG. 8. An example of a stable cuspon. The plot shows the fi
uU1u2 versus x and t. The parameters arek51.0, a51.0, v0

51.5, andv50.5, with r050.5.
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However, the collapse is not the only possible outcome
the instability. In some other cases, which are not displa
here, the instability of peakons could be quite weak, giv
rise to their rearrangement into regular solitons by the sh
ding of a small amount of radiation.

C. Cases3Å0

The predictions of the analysis developed above for
most general case, when the SPM terms are present in
model (s3Þ0), were also checked against direct simu
tions. As a result, we have found, in accord with the pred
tions, that only regular solitons exist in the cases3.0, while
in the cases3,0, both regular solitons and peakons ha
been found as generic solutions. Further simulations, de
of which are not shown here, demonstrate that both reg
solitonsand peakons are stable in this case.

d

FIG. 9. The spatial profile of the stable cuspon att520. The
parameters are the same as in Fig. 8.

FIG. 10. The spatial profile is shown for an unstable cuspon
terms of ImU1 at t51023. The inset depicts the time evolution o
the maximum value ofuU1u2. The transition to collapse is clearl
seen as an explosive temporal behavior of the amplitude. The
rameters arek50.01, a51.1, v050.1, andv520.3, with r0

52.618.
6-12
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SINGULAR AND REGULAR GAP SOLITONS . . . PHYSICAL REVIEW E 65 066606
IV. CONCLUSION

In this paper, we have introduced a generic model of th
waves coupled by linear and nonlinear terms, which
scribes a situation when three dispersion curves are clos
an intersection at one point. The model was cast into
form of a system of two waves with opposite group velo
ties that, by itself, gives rise to the usual gap solitons, wh
is further coupled to a third wave with zero group veloc
~in the laboratory reference frame!. Situations of this type are
quite generic, being realizable in various models of nonlin
optics, density-stratified fluid flows, and in other physic
contexts. In particular, two versions~temporal and spatial! of
a nonlinear-optical model, which is based on a wavegu
carrying the triple spatial Bragg grating, have been ela
rated on in the Introduction. Our consideration was focu
on zero-velocity solitons. In a special case when the s
phase modulation~SPM! is absent in the equation for th
third wave, soliton solutions were found in an exact form
was shown that there are two coexisting generic families
solitons: regular solitons and cuspons. In the special c
when the coefficient of the linear coupling between the fi
two waves and the third one vanishes, cuspons are repl
by peakons. Direct simulations have demonstrated that
regular solitons are stable~in the case when the regular so
ton is close to the border of the cuspon region, it ha
persistent internal mode!. The cuspons and peakons may
both stable and unstable. If they are unstable, they ei
shed off some radiation and rearrange themselves into r
lar solitons, or, in most typical cases, the development of
cuspon’s instability initiates onset of spatiotemporal collap
Actually, the present system gives the first explicit exam
of collapse in one-dimensional gap-soliton models.

The most general version of the model, which includ
the SPM term in the equation for the third wave, has a
been considered. Analysis shows that cuspons cannot ex
.

n
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this case, i.e., cuspons, although being possibly dynamic
stable, are structurally unstable. However, depending on
signs of the SPM coefficient, and some combination of
system’s parameters, it was shown that a generic family
peakon solutions may exist instead. In accord with this p
diction, the peakons have been found in direct simulatio
The peakons, as well as the regular solitons, are stable in
system including the SPM term. We stress that peakons
physical solutions, as they have all their field compone
and their first derivatives finite.

The next step in the study of this system should be c
sideration of moving solitons, which is suggested by t
well-known fact that the usual two-wave model gives rise
moving gap solitons too@1#. However, in contrast to the
two-wave system, one may expect a drastic difference
tween the zero velocity and moving solitons in the pres
three-wave model. This is due to the reappearance of a
rivative term in Eq.~6!, when it is written for a moving
soliton, hence, solitons which assume a singularity or ju
in theU3 component, i.e., both cuspons and peakons, can
then exist. Nevertheless, one may expect that slowly mov
solitons will have approximately the same form as the c
pons and peakons, with the singularity at the central po
replaced by a narrow transient layer with a large gradien
the U3 field. Detailed analysis of the moving solitons i
however, beyond the scope of this paper.
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@20# L. Bergé, Phys. Rep.303, 259 ~1998!.
06660
, @21# H. S. Eisenberg, R. Morandotti, Y. Silberberg, S. Bar-Ad,
Ross, and J. S. Aitchison, Phys. Rev. Lett.87, 043902~2001!.

@22# A. R. Champneys, B. A. Malomed, and M. J. Friedman, Ph
Rev. Lett.80, 4169~1998!.
6-14


