PHYSICAL REVIEW E, VOLUME 65, 066606
Singular and regular gap solitons between three dispersion curves
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A general model is introduced to describe a wave-envelope system for the situation when the linear disper-
sion relation has three branches, which in the absence of any coupling terms between these branches, would
intersect pairwise in three nearly coincident points. The system contains two waves with a strong linear
coupling between them, to which a third wave is then coupled. This model has two gaps in its linear spectrum.
As is typical for wave-envelope systems, the model also contains a set of cubic nonlinear terms. Realizations
of this model can be made in terms of temporal or spatial evolution of optical fields in, respectively, either a
planar waveguide, or a bulk-layered medium resembling a photonic-crystal fiber, which carry a triple spatial
Bragg grating. Another physical system described by the same general model is a set of three internal wave
modes in a density-stratified fluid, whose phase speeds come into close coincidence for a certain wave number.
A nonlinear analysis is performed for zero-velocity solitons, that is, they have zero velocity in the reference
frame in which the third wave has zero group velocity. If one may disregard the self-phase mod@&iidn
term in the equation for the third wave, we find an analytical solution which shows that there simultaneously
exist two different families of solitons: regular ones, which may be regarded as a smooth deformation of the
usual gap solitons in a two-wave system, augponswhich have finite amplitude and energy, but a singu-
larity in the first derivative at their center. Even in the limit when the linear coupling of the third wave to the
first two nearly vanishes, the soliton family remains drastically different from that in the uncoupled system; in
this limit, regular solitons whose amplitude exceeds a certain critical value are replapedknngwhose first
derivative is finite at the center, but jumps in valu&hile the regular solitons, cuspons, and peakons are found
in an exact analytical form, their stability is tested numerically, which shows that they all may be stable. If the
SPM terms are retained, we find that there may again simultaneously exist two different families of generic
stable soliton solutions, namely, regular ones and peakons. Direct simulations show that both types of solitons
are stable in this case.
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I. INTRODUCTION coupling, by straight lines, and assuming a generic cubic
[x®] nonlinearity, one arrives at a generalized massive
Thirring model (GMTM), which has a family of exact GS

Gap solitong(GS) is a common name for solitary waves solutions that completely fill the gajgt]. The model has a
in nonlinear models which feature one or m¢gd gaps in  direct application to nonlinear optics, describing copropaga-
their linear spectrum, see review papgt$and[2], respec- tion of forward- and backward-traveling electromagnetic
tively, for these two cases. A soliton may exist if its fre- waves in a fiber with a resonant Bragg gratit®G). Gap
quency belongs to the gap, as then it does not decay intsolitons, first predicted theoretically, were observed in ex-
linear waves. periments with light pulses launched into a short piece of the

Gaps in the linear spectrum are a generic phenomenon iBG-equipped fibef5] (in fact, optical solitons that were first
two- or multi-component systems, as intersection of disperebserved in the BG fibel6] were, strictly speaking, not of
sion curves belonging to different components is genericallthe GS type, but more general ones, whose central frequency
prevented by a linear coupling between the components. Exdid not belong to the fiber's band gap
cluding cases when the system’s linear spectrum is unstable GS are known not only in optics but also in other physical
(which is possible in a fluid dynamics applicatipdl]), the  settings, for instance, in density-stratified fluid flows, where
intersection avoidance alters the spectrum so that a gagispersion curves pertaining to two different internal-wave
opens in place of the intersection. Approximating the twomodes often exhibit near intersections. Again taking into re-
dispersion curves, that would intersect in the absence of thgard weak nonlinearity, one can predict the occurrence of GS

in density-stratified fluid$7].
In this work, we aim to consider GS that may exist in a

A. Model system

*Email address: R.H.J.Grimshaw@Iboro.ac.uk generic situation of the next type, when the underlying sys-
"Email address: malomed@eng.tau.ac.il tem contains three wave components, and the corresponding
*Email address: g.gottwald@surrey.ac.uk dispersion curves intersect at three nearly coincident points,
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", AN ; We stress that the lattice in Fig. 1 is not completely sym-
‘ o ! metric; although the triangular cells of the lattice are equilat-
eral ones, the two diagonal subgratings are assumed, in the

o . general case, to have the streng¢tbntrast of the refractive

index) smaller than the horizontal one. The bold triangles
! inscribed into the two triangular cells illustrate the resonant
o - Bragg reflections that give rise to linear couplings between
the waves. Then, neglecting intrinsic dispersion or diffraction

AT of the waves in comparison with the strong artificial
dispersion/diffraction induced by the Bragg reflections, nor-

2 malized equations governing the spatial evolution of the
) 1 three fields whose Poynting vectors are shown by three bold

arrows in Fig. 1, are

R —_—— +U,+ kU
g gt ox oy 2
2 2 2y, —
FIG. 1. A schematic representation of the optical model that +(Jug*+ 2]ua|*+2[ug[*)u =0, (1)
gives rise to the three linearly coupled waves ig‘@ waveguide.
The figure shows either the planar waveguide with the triple Bragg dus, du, 1 du,
grating, in the case of the temporal evolution of the fields, or the I ot + X _ﬁ W +uyt k¥ ug

transverse cross section of the bulk medium of the layered
(photonic-crystal-fiber type, in the case of the spatial evolution +(|u2|2+ 2|U1|2+ 2|u3|2)u2:0, (2)
along the coordinate perpendicular to the plane of the figure. The

triangles formed by bold arrows illustrate how the linear couplings

between the three waves, whose Poynting vectors are represented [ duz 2 dug N
by the arrows, are induced by the Bragg reflections on the three T ﬁ oy T KT Ugt KUz

gratings. The difference between the gratings represented by the

continuous and dashed lines is in their streng#fractive-index + (|ug|?+ 2|uy |2+ 2|uy]?) ug= weus. ®)
contras}.

Here, the evolution variablieis the proper time in the case of
unless linear coupling terms are taken into account. Situathe temporal evolution in the planar waveguide, or the coor-
tions of this type can readily occur in the above-mentionedlinate z in the direction perpendicular to the plane of the
density-stratified fluid flows, since tuning of two suitable ex-figure in the case of the spatial evolution in the bulk wave-
ternal parameters can often lead to a near coincidence in tf@uide. In the latter case, the beam enters the medium through
linear phase speeds of three independent internal wavée planez=0 and evolves along the coordinatethat is
modes, for certain wave numbefsee[8]). Indeed, similar Wwhy it plays the role of the evolution variable in the equa-
considerations can be applied to many other physical sydions(the initial conditions necessary to launch a soliton will
tems. As for the usual GS systems, the generic wavebe discussed in more detail belpwhe relative coefficients
envelope model can be expected to contain cubic nonlinedp front of the x- and y-derivative terms correspond to the
terms. geometry in Fig. 1, the coefficient of the walk off in tixe

In optics, a x®-nonlinear model with three linearly direction in the first two equations being normalized to be
coupled waves is possible too, in terms of either temporary-1. The coefficient of the BG-induced linear conversion
evolution of fields in a planar nonlinear waveguide equippedoetween the waves, andu, is normalized to be one, while
with a triple BG in the form of three systems of parallel the parametek (which is complex, in the most general case,
scores, or spatial evolution of stationary fields in a bulkbut see the discussion belpaccounts for the linear conver-
waveguide with a similar triple BG consisting of three sys-sion between these waves and the third waygand the
tems of parallel interfaces between layers. The latter realizadsual ratio 1:2 between the coefficients of the self-phase
tion seems natural enough, as it strongly resembles photonigrodulation (SPM) and cross-phase modulatidiXPM) is
crystal fibers, which have recently attracted a great deal ofidopted. Lastp, is a frequency/wave-number mismatch be-
interest[9]. Note that the former version of the model is a tween the third and the first two waves, which is caused by
generalization of a three-wave model fory&)-nonlinear the above-mentioned asymmetry between the diagonal and
planar waveguide with an ordinary BG, which was intro- horizontal subgratings, as well as by other reasons.
duced in[10,11]. Both versions of the proposed model are As we mentioned above, the Bragg constanin Egs.
illustrated in Fig. 1, where the periodic lattice shows the(1)—(3), which couples the fieldi; to the pairu, ,, is com-
triple BG. In the case of the temporal evolution, Fig. 1 dis-plex in the general cadmote that the constant of the Bragg
plays the planar waveguide, while in the case of the spatiatoupling between the fields, andu, might also be complex
evolution, it is a transverse cross section of the bulk wavein its primary form, and making it equal to one in Eq$)
guide. and (2) involves opposite constant phase shifts of the fields
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u; andu,, which is whyx and x* appear exactly as in Egs. [ou;  duy

(1)—(3)]. However, assuming that each score, the families of '(7— X +Up+ kU3

which constitute the triple gratingin the case of the

temporal-domain evolution in the planar waveguijdgives +a(ao|uy|*+ aluy|*+|ug[Hu=0, (4
rise to simple reflection described by the classical Fresnel

formulas, it is easy to conclude that all the coupling con- . @ & Ut

stants are real and positive, provided that either the light is '\ ot ox | Ut KUs

polarized orthogonally to the waveguide’s plane, and the re-
flection takes place from a less optically dense matéiil,
the “score” is, literally, a shallow trough on the surface of au
the planar Wavegwde_or the light is poIar|;ed paraIIeI tothe ;3. k(Up+Uy) + (o3| Us|2+ a|uy| 2+ a|us|D) us= wous,
plane of the waveguide, and the reflection is from a more 9t
optically dense material. Similarly, in the case when the (6)
same _equations describe the _spatial evolution of the Optic‘%here, in accord with the discussion above, we rséb be
fields in the Igyered k_Jqu r_nedlum,_ one may assume that eiraq| and positive.
ther the light is polarlged in _the dwecﬂo_n, a_nd seams be- The coefficientsr, s anda in Egs.(4)—(6) are the gener-
tween the layers are filled with a materigr instance, ar  ajized SPM and XPM coefficients, respectively. In particular,
which is optically less dense than the bulk medium, or the, js defined as a relative XPM coefficient between the first
polarization is orthogonal to theaxis (i.e., it is parallel to  two waves and the third wave. In fact, the coefficients
the plane of Fig. J, and the material filling the interlayer and o, both may be normalized to be 1, unless they are
seams is optically denser than the host medium. equal to zero; however, it will be convenient to keep them as
In the present paper, we focus on this case, which wagiee parameters, see beldwote that the SPM coefficients
described above in detail for the realizations of the model irare always positive in the optical models, but in those de-
terms of both planar and bulk optical waveguides, and whiclscribing density-stratified fluids they may have either sign
corresponds tac real and positive in Eqs(1)—(3). Note,  In optical models, all the coefficients ando, 3 are positive.
incidentally, that the case whenis real andhegativecan be  However, in the models describing the internal waves in
reduced to the same case simply by reversing the sign in thetratified fluids, there is no inherent restriction on their signs,
definition of us. and some of them may indeed be negative.
The model displayed in Fig. 1 may be further generalized The symmetry between the walk-off terms in E¢8.and
by introducing an additional asymmetry, which will remove (5) is not really essential, and we will comment Iatgr on the
the equality between the horizontal side of the lattice’s trian/M0re general case when these terms are generalized as fol-
gular cell and its diagonal sides. Then, the simultaneous fullOWS:
fillment of the Bragg-reflection.conditions for t.he waves, m Uy U, Uy
andu; can be secured by making the waveguide anisotropic. -— - —, +——+C—, 7
However, such a generalization goes beyond the scope of X X X X

this paper. wherec, andc, are different, but have the same sign. As for
For the physical reallzatllorl. of the model, Ec($)—(3) Eq. (6), it is obvious that the walk-off term in this equation,

must be supplemented by initial conditionstat0 in the it any can always be eliminated by means of a straightfor-

case of the temporal evolution in the planar waveguide, o{yard transformation.

boundary conditions a=0 in the case of the spatial evolu-  \we have kept only the most natural nonlinear SPM and

tion in the bulk medium. It is sufficient to assume thatf at XpPM terms in Eqs(4)—(6), i.e., the terms of the same types

=0, a single wave compone(for instanceus) is launched as in the standard GMT model. Additional terms, including

into the waveguide. The linear-coupling terms in the equanonlinear corrections to the linear couplings.g., a term

tions will then start to generate the other components, and, i#-|u;|?u, in Eq. (4)] may appear in more general models,

solitons that might exist in this model are statdee below, such as a model of a deégtrong BG [10].

they may self-trap from such an initial beam. Equations (4)—(6) conserve the norm, which has the
Bearing in mind also the above-mentioned application taohysical meaning of energy in optics,

internal waves in stratified fluids, as well as similar realiza- )

tions in other physical media, Eq&l)—(3) may be naturally N= S f+ﬁ|un(x)|2dx, @)

extended by introducing more general SPM and XPM coef- n=1,2,3

ficients, as in applications other than nonlinear optics, the o

ratios between the XPM and SPM coefficients may be difthe Hamiltonian,

ferent from those adopted above. Thus, the generalized sys-

tem of equations takes the following form, in which we con-

fine consideration to y-independent solutions (the .

consideration of possible three-dimensional solitons in the H = '_f”( o &—u* %)dX'FC c (10)

case ofy-dependent fields is not an objective of this work grad™ 2 Lox 72 e

+a(ao|uy|?+ aluy|*+|uslPHu,=0,  (5)

— oo

H=H grad+ H coupl+ H focus: (9)

ox

—o0
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e . been found in the BG modédivhich does contain a linear
Hcoup?‘f_w[U1U2+KU3(U1+U2)]dX+C-C-. (1) parh in the case where the grating parameter changes

abruptly[18].
Then, we show that, when the SPM term is restored in Eq.
+oo[ 1 (6) [i.e., 03#0; the presence or absence of the SPM terms
Hiocus —J §a201(|u1|4+|u2|4) ~ o in Egs.(4) and(5) is not crucially importari the sys-
"" tem supports a different set of soliton solutions. These are
1 regular GS and, depending on the sign of certain parameters,
+ = o3| ug*+ @?|ug|?|uy) 2+ afugl?(Juy|? a family of peakons, which, this time, appear as generic so-

2 lutions, unlike the casers=0, when they only exist as a
) limiting form of the cuspon solutions corresponding #o
+]uy|?) [dx, (12 —0. As far as we know, the model formulated in the present

paper is the first spatially uniform nondegenerate (e, a
model with a nonvanishing linear panvhich yields both
and the momentum, which will not be used here. In theseuspons and peakons.

expressions, the asterisk and c.c. both stand for complex con-

jugation,Hgaq,  Heoupin @NdHioeus beINg the gradient, linear- B. Stability of solitons and spatiotemporal collapse
coupling, and self-focusing parts of the Hamiltonian. To ob-
tain the Egs.(4)—(6) from the Hamiltonian, the conjugate
pairs of the variables are defined, in a standard fashion,
Up,Up .

Our objective is to find various types of solitons existing
in the generic three-wave systerf®—(6) and investigate
their stability. Focusing first on the cassuggested by the
analogy with GMTM when the SPM term in Eq6) may be

As concerns the dynamical stability of the various solitons
in the models(4)—(6), in this work we limit ourselves to
Hirect simulations, as a more rigorous approach, based on
numerical analysis of the corresponding linear stability-
eigenvalue probleni19], is technically difficult in the case
of cuspons and peakofi®sults of such an analysis, based on
the Evans-function technique, will be presented elsewhere
In fact, direct simulations of perturbed cuspons and peakons

neglectedi.e., o3=0), in Sec. Il we find a general family i 3 hard problem too, but we have concluded that identical
of zero-velocity solitons in an exact analytical form. We will ¢ its concerning the stability are producete Sec. Il

demonstrate that they are of two drastically different typesiyo o) by high-accuracy finite-difference and pseudospectral
regular GS, andusponsi.e., solitons with a cusp singularity

. . . . U methods(each being implemented in more than one particu-
at the center, in which the soliton amplitude is finite, but thej, ) "\which lends the results credibility. A general con-
derivative is infinite; further, the energy of the cuspons iSqygjon is that the regular solitons are always stable. As for
finite. Cuspons are known to exist in degenerate modelg,e ,5hons and peakons, they may be either stable or un-
without linear termgexcept for the evolution term such as

. . . stable.
ou/at), i.e., without a linear spectrum, a well-known ex- ¢ \he cusp is strong enough, the numerical results pre-
ample being the exactly integrable Camassa-H@ldH)  sonteq pelow demonstrate that the instability of a cuspon
equation[13,14] (see alsg15]). Our model resembles the

in th hat both i . e | initiates formation of a genuine singularity, i.e., onset of a
CH one in the sense that both give rise to coexisting solugpaintemporal collapsE20] in the present one-dimensional
tions in the form of regular solitons and cuspons. The caus

fhodel. Before proceeding to the consideration of solitons in

for the existence of these singular solitons in our model is thgyg f6|10wing sections, it is relevant to discuss collapse phe-
fact that, looking for a zero-velocity soliton solution, one ,omenon in some detail.

may e_Iimir_1ate _the fieldi; by means of an algebraic relatio_n A simple virial-type estimate for the possibility of the
following, in this case, from Eq(6). The subsequent substi- ¢4 janse can be done, assuming that the field focuses itself in
tution of that result into the first two Eq¢4) and (5) pro- 5 narrow spot with a sizet), amplitudeX(t), and a charac-

duces aational nonlinearity in them, the corresponding ra- g jgic valueK(t) of the field’s wave numbei20]. The con-
tional functions featuring a singularity at sonteritical) servation of the norni8) imposes a restrictioR?L ~N, i.e.,

value of the soliton's amplitude. If the amplitude of a L~N/N2. Next, the self-focusing paf®) of the Hamiltonian
regular-soliton solution is going to exceed the critical value,(g) which drivés the collapse, can be estimated as
it actually cannot exist, and in the case wheg=0 it is ' ’

replaced by a cuspon, whose amplitude is exactly equal to Hiocus~ — N4L~ —NK2, (13
the critical value.

In the limit x—0, which corresponds to the vanishing On the other hand, the collapse can be checked by the gra-
linear coupling between the first two and third waves, thedient term(10) in the full Hamiltonian, that, in the same
cuspon resemblesgeakon which is a finite-amplitude soli- approximation, can be estimatedtdg N2KL~NK. Fur-
tary wave with a jump of its first derivative at the center. ther, Eqs(4)—(6) suggest an estimaté~ X2 for a character-
Note that peakon solutions, coexisting with regular solitongstic wave number of the wave fie[the same estimate fdt
(this property is shared by our mogelare known in a follows from an expressiori21) for the exact stationary-
slightly different (also integrable version of the CH equa- soliton solution given beloy thus we haveH g, NNZ,
tion, see, e.g., Refd13,16,17. We also note that soliton Comparing this with the expressidéh3), one concludes that
solutions with a discontinuity in the first derivative have the parts of the Hamiltonian promoting and inhibiting the

066606-4



SINGULAR AND REGULAR GAP SOLITONS . .. PH/SICAL REVIEW E 65 066606

collapse scale the same way s> (or L—0), hence a : , ) , : , ®
weak collaps¢20] may be possiblébut does not necessarily
take placgin systems of the present type. We stress that, in 4
one-dimensional models of GS studied thus far and based ot
GMTM, collapse has never been reported. T existence

of the collapse in the present one-dimensional three-wave |,
GS model, which will be shown in detail below as a result of
numerical simulations, is therefore a novel dynamical fea- 4}
ture, and it seems quite natural that cuspons and peakons, i
the case when they are unstable, play the role of catalyste °f
stimulating the onset of the collapse. The possibility of a real
collapse in a one-dimensionélD) system is quite interest-  ~
ing by itself, and also because experimental observation of _|
spatiotemporal self focusing in nonlinear optical media is a

subject of considerable interest, see, e.g., 2] -sf
—4
Il. ANALYTICAL SOLUTIONS
A. The dispersion relation R g 2 a2 g 2 4

The first step in the investigation of the system is to un-

derstand its linear spectrum. Substituting ,s~€xXplkx — _q 5: (3 4< 12 (b) wy>1. The dashed line in each panel is
—iwt) into Egs.(4)—(6), and omitting nonlinear terms, we ,_ ,,  The case with & k?<w,<1 is similar to caséa) but with
arrive at a dispersion equation, the pointsw, and 1 atk=0 interchanged.

(0?—K2—1)(w—wg)=2k*(w—1). (149

FIG. 2. Dispersion curves produced by E@4) in the casex

where it is assumed that the soliton’s frequeacielongs to

_ . : one of the gaps. In fact, even the description of zero-velocity
{L g f_lrgt ttvr\:g wzlar\(/je\:l;v%\:g d%i%%u;)lgs;n?grflgekﬁguwe:Igg;)es%vfr?a olitons is quite complicated. Note, however, that if one sets
’ =0 in Egs.(4)—(6), keeping nonlinear XPM couplings be-
the solutions to Eq(14) arew; ;= =1+ k? and wz= wo. If N gs.(4)-(6) bing ping

) : tween the first two and third waves, the gap which exists in
«#0, the spectrum can be easily understood by treating  he ywo-wave GMT model remains unchanged, and the cor-
a small parameter. However, the following analysis is valid

X o responding family of GS solutions does not essentially alter,

for all values ofx in the range 8<«x“<1. , in accord with the principle that nonlinear couplings cannot

First, consider the situation whée=0. Three solutions of = 440, gaps or open a new one if the linear coupling is absent
Eq. (14) are then [12]; nevertheless, the situation is essentially different i
vanishingly small, but not exactly equal to zero, see below.

0=1, 0=w.=(0y—1)2% (wo+1)%/4+2k. (15 The substitution of Eq(16) into Egs.(4) and(5) leads to

a system of two ordinary differential equations for(x)

It can be easily shown thai_ <min{wy,—1}<maxXwy,—1}  andU,(x), and an algebraic relation fds3(x),
<w,, SO that one always has _<—1, while w, <1 if

wo<1l—«k? and w,.>1 if wy>1—«2 Next, it is readily iU]=wU;+U,+ kUz+ a(a@oi|Uq|%+ a|U,|?

seen that, ak®>— o, eitherw?~k?, or w~ w,. Each branch )

of the dispersion relation generated by Et4) is a mono- +[Us[9) U1, 17
tonic function ofk?. Generic examples of the spectrum are o 5 5
shown in Fig. 2, where the pané® and(b) pertain, respec- —iUg=wU,+ U+ kUs+ a(ao;|Uy[*+ a|U,]
tively, to the case®y,<1— «? with w_ <1, andwy>1 with +]Us/A)U,, (18)

w,>1. The intermediate caseIk’<wy<1, is similar to
that shown in panefa), but with the pointsw, and 1 atk

. : —w+ 24 24 )U,= +
=0 interchanged. Whemo,<1, the upper gap in the spec- (wo— w+03|Us|"+ a|Uy|*+ a|U,[*)Uz= k(U1 + Uy),

trum is mifw,,1}<w< maXw,,1}, while the lower gap is (19)
w_<w<wo. Whenwo>1, the upper gap iwo<w<w.,  where the prime stands fa/dx. To solve these equations,
and the lower one is_<w<1. we substituteU, ,=A; Ax)exfi¢; Ax)] with real A, and
¢, . After substituting the expressidt9) into Egs.(17) and
B. Gap solitons (18), and some simple manipulations, it can be found that

I(Ai—Aé)’zO and ($,+ ¢,)'=0. Using the condition that
e;he soliton fields vanish at infinity, we immediately conclude
that

The next step is to search for GS solutions to the ful
nonlinear system. In this work, we confine ourselves to th
case of zero-velocity GS, substituting into E¢$)—(6)

u(x,)=U,(x)exp—iwt), n=1,23, (16 AZ(X)=A5()=S(x); (20
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as for the constant value @f;+ ¢,, it may be set equal to C. Cuspons, the caserz=0
zero without loss of generality, so tha;(x)= — ¢»(X)
= ¢(x)/2, wheregp(x) is the relative phase of the two fields.
After this, we obtain two equations f&(x) and ¢(x) from

Settingo;=0 makes it possible to solve E®3) for U,
explicitly in terms of Sand ¢,

Egs.(17) and(18), 5 2k+\/Scod ¢/2) @7
3:—.
¢'=—2w—2 cosp—2a*(1+0)S W~ w—2aS
_S—lug(wo_w_%ug), (21) For simplicity, we also setr;=0 in Egs.(4) and (5) and
subsequent equations, although the latter assumption is not
S'= —2Ssin¢—2x\/SUs sin(¢/2), (22)  crucially important for the analysis developed below. Indeed,

the analysis is based on the fact that the fielgl can be
and Eq.(19) for the third waveU 5 takes the form of a cubic explicitly eliminated by means of Eq27), which is not af-

algebraic equation fected byo,. If o4 is kept in the system, it merely renormal-
izes some coefficients in the formulas derived below.
Us(wo— w—2aS— 03|U3|?)=2k/Scog ¢/2), (23 At the next step, one can also eliminateusing Eqs(26)

o ) ) and(27), to derive a single equation f@,
from which it follows thatU; is a real-valued function.

This analytical consideration can be readily extended for (d9dx)?=4S?F(S), (29
more general Eqg4) and (5) that do not assume the sym-
metry between the waves, and u,, i.e., with the group- 1
velocity terms in the equations altered as in Eg). In par- F(S)E( 1-w— Eazs)
ticular, the relation (20) is then replaced byc;A%(x)
= czAg(x)ES(x). The subsequent analysis is similar to that
above, and leads to results for the asymmetric model that are 2
qualitatively similar to those presented below for the sym-
metric case. The functionF(S) has either one or three real zei®s One
Equations(21) and(22) have a Hamiltonian structure, as is
they can be represented in the form

2
1+

1
—(1—w——a28>

5 . (29

wog—w—2aS

:2 — 2
dS oH d¢  oH So1=2(1-w)/a%, (30
= =——= (24)

dx d¢’ dx S’ and the remaining two, if they exist, are real roots of the

quadratic equation,
with the Hamiltonian
+2w+ a? —w— +4k%=0.
H=2Scosd+ a?(1+ o) S (2+20+ a"Sy)(wg—w—2aSy) +4k“=0 (31
3 Only the smallest positive real root of E@1), to be denoted
+20S+U3(wo— 0—2aS)— E‘T3U4' (250 Spo (if such existy, will be relevant below. Note, inciden-
tally, that F(S) cannot have double roots. It is easy to see
that a consequence of this fact is that E2B) cannot gener-
ate kink solutions, which have different limits &s- o, for
both of which the right-hand side of ER8) must have a
double zero.

For a bright-soliton solution of Eq28), we need first that
F(0)>0 (in this paper, we do not consider dark solitons, nor
“antidark” solitons, i.e., solitons on top of a finite-amplitude
flat background, a reason being that there is little chance that
“the flat background would be modulationally stabléom-
paring the conditior-(0)>0 with the expressions given in

2Scosh+ a?(1+ ) S+ 20S Sec. Il A for the gap;lin 'ghe linear spectrum, it is reqqily
shown that this condition is exactly equivalent to requiring
+Ug(wo—w—2aS)—(3/2)03U‘3‘=0. (26)  that w belongs to either the upper or the lower gap of the
linear spectrum. We note that the coupling to the third wave
In principle, one can use the relatiof®3) and(26) to elimi-  gives rise to nonlinearity of the rational type in the expres-
nateU; and ¢ and so obtain a single equation f8rHow-  sion(29), despite the fact that the underlying syste@js-(6)
ever, this is not easily done unless=0 [no SPM term in  contain only cubic polynomial nonlinear terms. Even if the
Eqg. (6)], and so we proceed to examine this special, butoupling constank is small, it is clear that the rational non-
important, case first. Note that the no-SPM case also plays dmearity may produce a strong effect in a vicinity otiti-
important role for GMTM, which is exactly integrable by cal valueof the squared amplitude at which the denominator
means of the inverse scattering transform just in this Ehlse in the expressio29) vanishes,

which is precisely a reduction of the Hamiltoni&é® of the
original systemg4)—(6) for the solutions of the present type.
Note thatH is here regarded as a function®and ¢, and the
relation(23) is regarded as determiniridy; in terms ofSand
¢. We stress that the dependeridg(S, ¢) was taken into
account when deriving the Hamiltonian representatiof).
For soliton solutions, the boundary conditionsxat +
yield H=0 so that the solutions can be obtained in an im
plicit form,
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Se=(wo— w)/2a, (32 case too. On the other hand,d#<0 and wy>1—«? (and
thenw>1), there are no positive roo%,, and so only cus-
where one must have(wy— »)>0 (otherwise, this critical PONS occur. , .
value is not relevait Let us now turn to a detailed description of the cuspon’s
If S,=>0, the structure of the soliton crucially depends onlocal structure near its center, whéis close toS;,. From
whether, with an increase & the functionF (S) defined by ~ the above analysis, one sees that cuspons occur wheaever
Eq. (29) first reaches zero &=S,>0 (i.e., eitherS=Sy, or  1€S in the lower gap, withwy>w and a>0, so that the
S=Sy,, Whichever is the smaller positive valer, instead, ~ Criterion (33) is satisfied, or whem lies in the upper gap
it first reaches the singularity &=S,, i.e., whether &S, ~ With 1~ «"<wo<w and a<0. To analyze the structure of
<SSy, or 0<S,<S,. In the former case, the existencef the cuspon, we first note that, as it follows from E26), one
plays no role, and the soliton is a regular one, having thd!as cosp=—1 (i.e., =) whenS=S,, which suggest to
amplitude S, This soliton may be regarded as obtained byS€t
a smooth deformation from the usual GS known in GMTM S — S=5(k?R
at «k=0. o S=0(K°R),

In the case 6:S,<S, as the soliton cannot have an am- yheres is a small positive parameter, and the stretched vari-
plitude larger thany'S, the amplitude takes this critical aplesR andp are positive. At the leading order i it then
value. The soliton is singular in this case, beinguwspon follows from Eq.(26) that p=p,R, Where
(see details beloyy but, nevertheless, it is an absolutely rel-
evant solution. The remaining possibilities are that either po=a>(Sp1— Sey). (35
S.<0 andSy>0, or vice versa; then the soliton may only
be, respectively, regular or singular. Of course no solitorAs it follows from the above analysig, is always positive
exists if both S, and S, are negative. Further, using the for a cuspon. We also stretch the spatial coordinate, defining
symmetries of the equations, it is readily shown that for alXx=8%?«y, the soliton center being at=0. SinceS(x) is
these soliton solutionsS(x) is symmetric about its center, an even function ofx, it is sufficient to setx>0 in this
which may be set at=0, that iS,S(X) is an even function of analySiS. Then, on SUbStitUting the first relation from 84)

x. For the cuspon solutions, and for those regular solution§to Eq.(28), we get, to the leading order if, an equation
whose squared amplitude &, it can also be shown that

the phase variablg(x) = ¢(x) — 7 andU(x) are odd func- R(dR/dy)®= poSi/ a®=K?, (36)
tions of x, while for those regular solutions whose squared
amplitude isSy, the phase variableb(x) and U3(x) are,
resp_ectively, odd and even funct_ions>of . R=(3Ky/2)2? (37)

It is now necessary to determine which parameter combi-
nations in the setd,wq,a) permit the options described Note that in the original unstretched variables, the relation
above. The most interesting case occurs whgh-w (S0  (37) shows that, near the cusp,
that w belongs to the lower gap, see Fig.&hd >0 (the

1+ cos¢=bp, (34)

so that

latter condition always holds in the applications to nonlinear Ser— S(X) ~ (3K kx/2)%3, (38
optics. In this case, it can be shown that the r&gj of Eq.
(31) is not relevant, and the options are determined by the dS/dx~ (2/3) (K k) ¥~ 13, (39
competition betweergy; and S;,. The soliton is a cuspon ) )
(0<S,<Syy) if and it follows from Eq.(27) that U5 is unbounded near the
cusp,
#(wo—w)<4(1-w). (33 Us~(Sy/a)(2apoK23kx) Y3 (40)

In effect, the condition33) sets an upper bound om for In particular, Eq(39) implies that, a¥ « decreases, the cusp
given wy andw. In particular, this condition is always satis- gets localized in a narrow region whepd<K?«? (outside
fied if 0O<a<4. this region,|dS/dx| is bounded and shows no cyspote

If, on the other hand, the conditiof83) does not hold that this limit can be obtained either a2—0, or asp,
(i.e., 0<Sy<Sg), we obtain a regular soliton. In a less —0 [recall thatp, is defined in Eq(35)].

physically relevant case, when agaig> o but <0, cus- An example of the cuspon is shown in Fig. 3. Although
pons do not occufas this timeS,<0, see Eq.(32)], and the first derivative in the cuspon is singular at its center, as it
only regular solitons may exist. follows from Eq.(39) [see also Fig. @], and itsU; com-

Next we proceed to the case&y<w, so thatw is located ponent diverges at—0 as per Eq(40), it is easily verified
in the upper gap of the linear spectrum. For0, we have that the value of the Hamiltoniaf®) [and, obviously, the
Si<0, hence, only regular solitons may occur, and indeed irvalue of the norm8) too] is finite for the cuspon solution.
this case there is always at least one positive ®ptso a  These solitons are similar to cuspons found as exact solu-
regular soliton does exist. #<0, then we havé&,>0, but  tions to the Camassa-HoltCH) equation[13,14], which
if wy<1— k2 (When alsaw<1), there is at least one positive have a singularity of the typkx|*® or |x|?® as|x|—0, cf.
root S,<S;; thus, only a regular soliton can exist in this Egs.(38) and(39). The CH equation is integrable, and it is
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016 : @ : 08 : o) : In the special cas&<1, when the third component is
weakly coupled to the first two in the linear approximation
i (in terms of the optical model represented by Fig. 1, it is the
014 B 07t I E . .

- case when the subgratings shown by the dashed lines are
I very weal], straightforward inspection of the above results
o ] shows that the cuspons look likeakonsthat is, except for
P the above-mentioned narrow region of the widii~ 2,
o1r 1 ost . 1 where the cusp is located, they have the shape of a soliton

| . with a discontinuity in the first derivative &(x) and a jump

 008f 1 @04 ; | ] in the phasep(x), which are the defining features of peakons
/ \ ([13,16). A principal difference of true peakons from cus-
oost 1 osf / ! ] pons is that the first derivative does not diverge inside a
! 4 peakon, but is of course, discontinuous.
ook | ool / \ | An important result of our analysis is that the family of

solitons obtained in the limik—O is drastically different
from that in the model where one sets=0 from the very
beginning. In particular, in the most relevant case, with

>w and «>0, the family corresponding te—0 contains
regular solitons whose amplitude is smaller thé®,; how-
ever, the solitons whose amplitude a0 is larger than
VS i.e., the ones whose frequencies belong to the range

0.021

FIG. 3. The shape of the cuspon far=2.0, wy=0.1, w=

—0.5, and(a) k=0.5, i.e., in the general case, afil xk=0.1, i.e., I~
for small . In case(b) we also show the usual gap solit@oy the (33) [note that the definition of,, does not depend on at

dashed ling the part of which above the critical valug=S,, all, Stee ,[E?j'(.SZ)]’ are r.epl?ced b_ydthe Fheakonts \;VS]ICh arel
(shown by the dotted lineshould be removed and the remaining constructed in a very simpie way. drop the part of the usua

parts brought together to form the peakon correspondingytd soliton above. the critical .|eV§= SC.,, and bring tog_e_ther the
0. two symmetric parts which remain below the critical level,

see Fig. &).

i ) . It is interesting that peakons are known as exact solutions
degenerate in the sense that it has no linear terms except fg§ 5 version of the integrable CH equation slightly different
dul gt (which makes the existence of the solution with a cusprrom that which gives rise to the cuspons. As well as in the
singularity possible Our three-wave systerf#)—(6) is not  present system, in that equation the peakons coexist with
degenerate in that sense; nevertheless, the cuspon solitorgyular soliton$16]. In the next section, we demonstrate that
are possible in it because of the model's multicomponenthe peakons, which are found only as limit-form solutions in
structure: the elimination of the third component generateshe no-SPM caser;=0, become generic solutions in the
the nonpolynomial nonlinearity in Eq$¢17) and (18), and, caseo;#0.
finally, in Egs.(22) and(28), which gives rise to the cusp. It
is noteworthy that, as well as the CH model, ours gives rise D. Peakons, the caser;#0
to two differentcoexistingfamilies of solitons, viz., regular A natural question is whether the cuspon solutions are
ones and cuspons. It will be shown below that the solitons oftructurally stable i.e., if they will persist on inclusion of
both types may be stable. terms that were absent in the analysis presented atibge

Of course, the presence of the singularitiedJis(x) and  other type of the stability, viz., dynamical stability against
dSdx at x—0 suggests that higher-order terms, such as themall initial perturbations, will be considered in the next sec-
higher-order dispersion, should be taken into regard in thigion). Here, we address this issue by restoring the SPM term
case. The fact that the cuspon’s Hamiltonian converges dén Eq. (6), that is, we now setr3# 0, but assume that it is a
spite these singularities, as well as a direct analysis, suggesmall parameter. Note that, in the application to nonlinear
that such higher-order terms will smooth the shape of theptics, one should expect thag>0, but there is no such
cuspon in a very narrow layer for small allowing for large  restriction on the sign ofr; in the application to the flow of
but not diverging values of the fields. However, the smalla density-stratified fluid. We still keeg,=0, as the inclu-
higher-order terms will not essentially alter the global shapesion of the corresponding SPM terms in E@4) and (5)
of the cuspons. In the next section we will show that, in fact,amounts to trivial changes both in the above analysis, and in
the genuine generic singular solitons éirethe presence of that presented below. On the other hand, we show below that
the SPM termp peakons, for which the singularities are the inclusion of the SPM term in E@6) is a structural per-
much weaker, hence, the latter issue is still less significanturbation which drastically changes the character of the soli-
Besides that, it appears to be an issue of principal interest tmn solutions.
understand what types of solitons the system may generate In view of the above results concerning the cuspons, we
without intrinsic dispersior(cf. the situation for the tradi- restrict our discussion here to the most interesting case when
tional GMTM, in which the spectrum of soliton solutions is S(x) is an even function ok, while #(x)= ¢(x)— and
completely altered by the addition of intrinsic dispersionU;(x) are odd functions. In principle, one can use the rela-
[22)). tions (23) and (26) to eliminate and U5 and so obtain a
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single equation foIS [a counterpart to Eq(28)], as it was 03p0<0, (43)
done above whemw3;=0. However, wheno3#0, it is not
possible to do this explicitly. Instead, we shall develop anhence, peakons are possiblesif<0, or if we keepo3>0
asymptotic analysis valid for— 0, which will be combined but allow po<<O. In the remainder of this section, we will
with results obtained by direct numerical integration of Egs.show that peakons may exist onlypi§>0. Hence, it follows
(21) and (22), subject of course to the constrairi3) and  from the necessary conditio@3) that peakons may indeed
(26). Since singularities only arise at the center of the solitorbe possible solely in the case;<0. On the other hand,
(i.e., atx=0) wheno3=0, it is clear that the introduction of regular solitons do exist in the casg>0 (i.e., in particular,
a smallo3# 0 will produce only a small deformation of the in nonlinear-optics modejisas they havé),=0, hence, nei-
soliton solution in the region whepeis bounded away from ther Eq.(41) nor its consequence in the form of the inequal-
zero. ity (43) apply to regular solitons. The existence (sfable
First, we consider regular solitons. Because the left-hangieakons foro3<0, and of(also stablg regular solitons for
side of EQ.(23) is not singular at any, including the point o3>0 will be confirmed by direct numerical results pre-
x=0, wheno3;=0, we expect that regular solitons survive a sented in the next section.
perturbation induced by;#0. Indeed, if there exists aregu-  To obtain a necessary conditiéwhich will take the form
lar soliton, with Sy=S(x=0), and¢(x=0)=7 andU4(x  of pg>0) for the existence of the peakons, we notice that the
=0)=0, it follows from Eq.(26) that the soliton’s amplitude existence of any solitary wave implies the presence of closed
remains exactly the same as it was =0, due to the fact dynamical trajectories in the phase plane of the correspond-
that the regular soliton hdd;(x=0)=0. ing dynamical system, which is based on the ordinary differ-
Next, we turn to the possibility of singular solutions, that ential Egs.(21) and (22), supplemented by the constraint
is, cuspons or peakons. Since we are assuming $gat (23). Further, at least one stable fixed pofff) must exist
=S(x=0) is finite, and thatp(x=0)=, it immediately inside such closed trajectories, therefore the existence of
follows from Eq. (23) that wheno3#0, U; must remain  such a stable FP is a necessary condition for the existence of
finite for all x, taking some valueJ,#0, say, asx—+0.  any solitary wave.
SinceUs; is an odd function ok, andU,# 0, there must be The FPs are found by equating to zero the right-hand
a discontinuity inU, at x=0, i.e., a jump fromU, to  sides of Egs(21) and (22), which together with Eq(23)
—U,. This feature is in marked contrast to the cuspons fodive three equations for the three coordinate$ andU ; of
which U is infinite at the center, see E@0). Further, it the FP. First of all, one can find a trivial unstable FP of the
then follows from Eq.(22) that, asx—0, there is also a dynamical system,
discontinuity in dS/dx, with a jump from ZUq\/S, to

—2kUg/S,. Hence, if we can find soliton solutions of this cosp= — w+ k% (0o~ ) S=0
type, withUy# 0, they are necessarifjeakonsand we infer 1+ k%l (wy— w) ’ ’
that cuspons dmot survive the structural perturbation in-
duced byo3#0. which does not depend ars. Then, three nontrivial FPs can
Further, if we assume that,#0, then Eq.(23), taken in  be found, with their coordinates, , S, , andUs, given by
the limit x—0, immediately shows that the following expressions:
2a(Sy—Sp) = 03U} (41 1-w

pW=m, SP="—7= %sm, uf)=0, 49
[recall thatS,, is defined by Eq(32)]. Next, the Hamiltonian
relation(26), also taken in the limik— 0, shows that

$P=m, (2-09)SP=25,~ 7S,

Po
- ;SO ZSO(Scr So)= O'SU41 (42)
(2-09)[aU]P=po— a®Sy, (45)
where we have used E@l1) [recall thatp, is defined by Eq. 1 )
(35]. Elimination of U, from Egs.(41) and (42) yields a 2 (3)_og _ = +"_
quadratic equation fog,, whose positive roots represent the (27 03)S S 57350
possible values of the peakon’s amplitude.

We recall that for a cuspon which existseaf=0 one has (2—03)[aUR?=po— a®S— a?k?,
po>0, i.e., the amplitude of the corresponding formal regu-
lar soliton exceeds the critical value of the amplitude, see Eq.
P a cog ¢ P12)=— = Ku SINES (46)

(35). Then, if we retain the conditiopy,>0, it immediately

follows from Eqgs.(41) and(42) that no peakons may exist if
the SPM coefficient in Eq6) is positive,o3>0. Indeed, Eq. where the superscript is a number label for the FP. To be
(41) shows thatS,—Sy>0 if o3>0, which, along withp,  specific, we now consider the case of most interest, when

>0, leads to a contradiction in the relati¢42). both Syp;>0 andS.>0. In this case, the FP given by Egs.
Further, it is easy to see that a general condition for the44) exists for allo; and all pg. However, for smallos (in
existence of peakons following from Eqgl) and(42) is fact 03<2 is enough and smallx, the FPs given by Egs.
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(45) and(46) exist only wherpy>0. Indeed, they exist only o1
for po>a>Sy; andp> oSy + k2, respectively, or, on using ot | ]
the definition (35 of pg, when Sy;>2S,, and Sy;>2S,,
+ k%l a, respectively.

Let us first suppose thaiy<0. Then there is only the i | .
single nontrivial FP, namely, the one given by E@&l). This 2
FP is clearly associated with the regular solitons, whose am-IU1I o |
plitude at the crest iS,;. Hence, we infer that fop,<0 cos | ]
there are no other solitary-wave solutions, and in particular,
no peakongand no cuspons whew;=0 either, in accor-
dance with what we have already found in Sec. I C above ooa

014 -

0.06 “

When combined with the necessary conditi@8) for the ozl i
existence of peakons, we infer that there are no peakon:

when o3>0, thus excluding peakons from applications to ° ” Z o 2 p

the nonlinear-optics models, where this SPM coefficient is X

fﬁm%mf\l/e' Hov;qever,hpealfons 'f”ﬁy oceur ln.dfanSIty—S;ratlf_led FIG. 4. The shape of the peakon for the case whgrO0,

uid flows, w eret ereisnoin erent rest_r|ct|on on the SI9Nyhere we plotjU,|2. The parameters ares= —0.01, x=0.1,

of o3. This case is con5|dereq be!ow, but first we npte Fhat N5 0, we=0.1, andw=—0.5. In this casepy=4.8.

the casepy<0 ando;>0 (which includes the applications

to nonlinear optics the same arguments suggest that therdilities due to discontinuities, we found it, sometimes, ben-

may beperiodic solutions with a peakon-type discontinuity €ficial to add an artificial weak high-wave-number viscosity

at the crests; indeed, our numerical solutions of the systeni§ the pseudospectral code. This was done by adding linear

(21) and (22) show that this is the case. damping terms to the right-hand side of E®, (5), and(6),
Next, we suppose thal,>0. First, if Sy;< 2S,, then there  which have the form-iv(k)k?u, in the Fourier representa-

is again the single nontrivial FP given by Ed4). But now,  tion, whereu, is the Fourier transform ofi, (n=1,2,3).

by analogy with the existence of cuspons whgp~0 and  The high-pass filter viscosity(k) suppresses only high

o3=0, we infer that the solitary wave solution which is as- wave numbers and does not act on others. In particular, we

sociated with this fixed point is a peakon, whose squared¢hose

amplitudeS, for small o3 is close toS,, while the FP has 5

S{=Sp/2< Sy 0 it |k|<-—=K,
If, on the other handSy;>2S,,, the FPs given by Egs. 16

(45) and (46) become available as well. We now infer that 16/k|

the peakon solitary-wave solution continues to exist, and for v(k) =1« n(T— )

sufficiently smallo; and« it is associated with the FP given

by Eq. (45). Although Eq.(45) implies thatS{?’~S,, and

the peakon’s squared amplitu®g, determined by Eqg41) .

and(42), is also approximately equal &, we nevertheless . . .

haVE(zSO)> s as rgguired. No¥e tqhat, %rthe present case, thdvhereK is the largest wave number in the actual numerical

FPs given by Eqs(44) and (46) lie outside the peakon's Scheme, andy is_a small viscosity co_efﬁmgnt. We have

e . . ; found thaty~ 10 ° was sufficient to avoid Gibbs’ phenom-
homoclinic orbit. In Fig. 4, we show a plot of a typical pea-

. L . . enon in long-time simulations.
g(r)]g ((;%talned, in this case, by numerical solution E@3) When instabilities occur at a singular poistisp or peak

it is hard to determine whether the instability is a real one, or
a numerical artifact. Therefore, we checked the results by
means of a finite-difference code which used an adaptive
staggered grid; motivated by the analysis of the vicinity of
A. Simulation techniques the pointx=0 reported above, we introduced the variable

The objectives of direct numerical simulations of the un-ézxzi3 to define an adaptive grid, and also redefirg
derlying Eqs.(4)—(6) were to check the dynamical stability =VéUs. In these variables, the cusp becomes a regular
of regular solitons, cuspons, and peakons in the ease0,  Point. This approach_was_, soIeI_y ysed to check the possible
and the existence and stability of peakons in the more gerfccurrence of numerical instabilities. _
eral caseg;#0. Both finite-difference and pseudospectral  In the following sections we present typical examples of
numerical methods have been used, in order to check that tiB& numerical results for both cases considered above, viz.,
same results are obtained by methods of both types. We usés=0 ando3<0, when, respectively, cuspons and peakons
semi-implicit Crank-Nicholson schemes, in which the non-are expected.
linear terms were treated by means of the Adams-Bashforth
method.

The presence of singularities required a careful treatment First, we report results obtained for the stability of regular
of cuspon and peakon solutions. To avoid numerical instasolitary waves in the case;=0. As initial configurations,

if 5K<k<3K
it TgK<Ik<gK.

if k>3K
] lllg,

III. NUMERICAL RESULTS

B. Caseo3;=0
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Real(U1)

FIG. 5. The shape of an initially perturbed regular soliton in the
caseo;=0 att=5, which illustrates the stabilization of the soliton
through the shedding of small-amplitude radiated waves. The plot
displayed is the field Rg,(x). The parameters are=0.01, «
=1.0, w;=0.2, andw=0.9.

we used the corresponding stationary solutions to E2jb.

and (22). To test the stability of the regular solitary waves,

we added small perturbations to them. As could be antici-

pated, the regular solitary wave sheds off a small dispersive,,

wave train and relaxes to a stationary soliton, see Fi§o5

a more detailed illustration of the g_eneration of small radi- FIG. 7. An example of a stable peakon. The plot shows the field

Zt?ed waves by a_sollton, see aI_sq .F'g' 8 b_é_ldw however, r]U1|2 versusx andt. The parameters are=1.0, «=1.95, w,
gular soliton is taken as an initial condition for paramete _ 1.5, andw=0.5, with po=0.04875.

values inside, but close to the border of the cuspon region, it

does not become unstable in this slightly modified section of

parameter spac@vhich only supports cuspopsbut instead . ~ 5
this soliton exhibits persistent internal vibrations, see an ex£Wlth o3=0) support peakons whem,>0 andpg«® is very

ample in Fig. 6. These and many other simulations Clearlye,mall. Direct simulations show that peakons do exist in this

show that the regular soliton is always stable, and, close t§ase and they may be either unstable or stable. In the case

the parameter border with cuspons, it has a persistent internﬁhen they are unstable, a hlgh-wa\_/e-number_ instability _de-
velops around the central peak. In Fig. 7, we display the time

It was shown analytically above that Eq4.7) and (18)

mode. evolution of a typical stable peakon.

023 ; ; , ; . ; Next, we look at what happens if we take a regular soliton
as an initial condition in a section of the parameter space

022 . which supports only stable peakons. This enables us to study

the competition of the structural stability of regular solitons
. (as confirmed in Fig. band the stability of peakons. The

initial condition is taken as a stationary regular soliton in the
1 parameter regioriclose to the boundary of the peakon re-
gion) with py<0, whereas the simulations are run for values

/
\_ ! /\ /\ T of the parameters correspondingolg>0, which only admits
\/ ' J ) peakons and excludes regular solitons. Unlike the case

shown in Fig. 6, the time evolution now does not exhibit

internal vibrations. Instead, the pulse slowly decays into ra-

iy diation. This outcome can be explained by the fact that the

peakon’s nornjsee Eq(8)] turns out to be larger than that of

e 2 20 % P 00 " T the initial pulse in this case, hence, its rearrangement into a
¢ stable peakon is not possible. An essential result revealed by

FIG. 6. Internal vibrations of an initially perturbed regular soli- the simulations is that cuspons may alsosbeble a typical
ton, which was taken close to the parameter boundary of the cuspd@xample being displayed in Fig. 8. In this figure, one can see
region. The plot shows the squared amplitude|U;(x=0)|?> of & small shock wave which is initially generated at the cus-

the U,(x) field versus time. The parameters ake=0.01, « pon’s crest. It seems plausible that this shock wave is gener-
=1.9, wy=1.5, andw=0.5, with p;=0.095[see Eq(35)]. ated by some initial perturbation which could be a result of

0.21

02 -

019 +

0.18 +
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036 |
03

026 [
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[Uq] o2}

006 |

— FIG. 9. The spatial profile of the stable cuspont&t20. The

o5 parameters are the same as in Fig. 8.

However, the collapse is not the only possible outcome of
A the instability. In some other cases, which are not displayed
‘ here, the instability of peakons could be quite weak, giving
rise to their rearrangement into regular solitons by the shed-
ding of a small amount of radiation.

0.0 1 I

C. Caseo3#0

FIG. 8. An example of a stable cuspon. The plot shows the field The predictions of the analysis developed above for the
|U,4|? versusx and t The parameters are=1.0, «=1.0, wq most general case, when the SPM terms are present in the
=1.5, andw=0.5, with p,=0.5. model (o3#0), were also checked against direct simula-

tions. As a result, we have found, in accord with the predic-
the finite mesh size in the finite-difference numerical SChem@ions’ that 0n|y regu|ar solitons exist in the Cwoa while
employed for the simulations. In fact, the emission of ajn the caser;<0, both regular solitons and peakons have
small-amplitude shock wave is quite a typical way of thepeen found as generic solutions. Further simulations, details
relaxation of both cuspons and peakons to a final stable statgf which are not shown here, demonstrate that both regular
To make sure that the shock wave is not an artifact generategplitonsand peakons are stable in this case.
by the numerical scheme, we have checked that its shape
does not change with the increase of the numerical accuracy.

To further test the stability of the cuspons and peakons, in
many cases we allowed the initially generated shock wave to ®r
reenter the integration domaifdue to periodic boundary 04
conditions used in the simulationand interact again with
the cuspon or peakon. As a result, the stability of the solitons
of these types has been additionally confirmed. An example= °3f
of the spatial profile of the cuspon established after a Iongg 025 [
evolution is shown in Fig. 9. Both the stability of the cuspon, ~
and the presence of a tiny shock wave are evident in the
figure.

However, unlike the regular solitons, which were foundto o+
be always stable, the cuspons are sometimes unstable. Typi
cally, their instability triggers the onset of spatiotemporal
collapse, i.e., formation of a singularity in a finite tirtsee a e a5 a1 s o 05 . s 2
discussion of the feasible collapse in systems of the present
type, given in the Introduction Simulations of the collapse  gG. 10. The spatial profile is shown for an unstable cuspon in
were possible with the use of an adaptive grid. A typicalierms of Imu, att=10"3. The inset depicts the time evolution of
example of the collapse is shown in Fig. 10, where the insefhe maximum value ofU,|2. The transition to collapse is clearly
shows thatwithin the numerical accuracy availapkiie am-  seen as an explosive temporal behavior of the amplitude. The pa-
plitude of the collapsing pulse indeed diverges in a finiterameters arex=0.01, a=1.1, w,=0.1, andw=—0.3, with p,
time. =2.618.
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IV. CONCLUSION this case, i.e., cuspons, although being possibly dynamically
stable, are structurally unstable. However, depending on the

In this paper, we hgve introduced a generic model .Of thre%igns of the SPM coefficient, and some combination of the
waves coupled by linear and nonlinear terms, which de-:

scribes a situation when three dispersion curves are close (Ystem’s parameters, it was shown that a generic family of
. ) . P . eakon solutions may exist instead. In accord with this pre-
an intersection at one point. The model was cast into th

form of a svstem of two waves with opposite aroun veloci- iction, the peakons have been found in direct simulations.
Y PP group The peakons, as well as the regular solitons, are stable in the

itlse?utrrt]r?gr t&ﬁsﬂ; ?é)vzstrr:isrg tx;cs yv?tl;]alzgraop Sroolgon\fél\gg'tc%ystem including the SPM term. We stress that peakons are
P group yphysical solutions, as they have all their field components

e e e 11 ceriaies e
q 9 : 9 The next step in the study of this system should be con-

gggf;’(tgelﬂs'tg;tsigagfr'esv :)IL\’/'grsf:g:'ﬁv;'mag‘:a:nar?éhseraggz?'calsideration of moving solitons, which is suggested by the
NP ’ P P . well-known fact that the usual two-wave model gives rise to

a nor_1linear—op_tica| model, which is pased ona Wavegu'd%woving gap solitons tod1]. However, in contrast to the
carrying the triple spatial Bragg grating, have been elabo'wo-wave system, one may expect a drastic difference be-

gegefe?(?_\lgkt;;? In;:)?ggﬁgorllr'l 2“; Ceoc?z;dféigo\?w\,'é ?15 tLOeClJSSeE;f_Ween the zero velocity and moving solitons in the present

hase modula%/oniSPM) i'S absenli in the equation for the three-wave model. This is due to the reappearance of a de-
P . . - €d rivative term in Eq.(6), when it is written for a moving
third wave, soliton solutions were found in an exact form. It

o . " §oliton, hence, solitons which assume a singularity or jump
was shown that there are two coexisting generic families o .
in the U3 component, i.e., both cuspons and peakons, cannot

solitons: regular solitons and cuspons. In the special ca ; :
when the coefficient of the linear coupling between the ﬁrsstt‘f;]en exist. Nevertheless, one may expect that slowly moving

. . sglitons will have approximately the same form as the cus-
two waves and the third one vanishes, cuspons are replacé . ; . .
ons and peakons, with the singularity at the central point

by peakons. Direct simulations have demonstrated that the . : .
. X .~ replaced by a narrow transient layer with a large gradient of
regular solitons are stabl@ the case when the regular soli-

ton is close to the border of the cuspon region, it has the U; field. Detailed analysis of the moving solitons is,

persistent internal mogleThe cuspons and peakons may beaﬁowever, beyond the scope of this paper.
both stable and unstable. If they are unstable, they either
shed off some radiation and rearrange themselves into regu-
lar solitons, or, in most typical cases, the development of the We would like to thank Tom Bridges, Gianne Derks, and
cuspon’s instability initiates onset of spatiotemporal collapseSebastian Reich for valuable discussions. B.A.M. and
Actually, the present system gives the first explicit exampleG.A.G. appreciate the hospitality of the University of Lough-
of collapse in one-dimensional gap-soliton models. borough(UK). The work of G.A.G. is supported by a Euro-

The most general version of the model, which includespean Commission Grant, Contract No. HPRN-CT-2000-
the SPM term in the equation for the third wave, has als@0113, for the Research Training Netwokkechanics and
been considered. Analysis shows that cuspons cannot exist Bymmetry in EuropéVASIE).
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